Advertisement

Journal of Materials Science

, Volume 29, Issue 6, pp 1666–1669 | Cite as

Structural strain in pyrites evaluated by X-ray powder diffraction

  • K. Sasaki
  • H. Konno
  • M. Inagaki
Papers

Abstract

Two parameters for measuring the structural strain, the effective Debye-Waller parameter, Beff, and lattice strain, ɛ, were evaluated on a natural pyrite (FeS2) after grinding. The effective Debye-Waller parameter, Beff, which depends on the displacement of atoms in the crystal, was calculated for the overall crystal, Beff(FeS2), and for sulphur, Beff(S), from the intensities of the X-ray diffraction lines. The Beff(S) increased markedly with increasing grinding time, while Beff(FeS2) did not change significantly. The lattice strain, ɛ, was not recognized. These observations suggest that the displacement of sulphur atoms preferentially takes place by grinding. The relations between these Beff values and crystallite size, L, were observed to be common for two different methods of grinding. This tendency was considered to be an inherent property of pyrite. The value of Beff(S) is a useful index to estimate mechanically caused strain in pyrite.

Keywords

Polymer Sulphur Pyrite Crystallite Size Powder Diffraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Takamori, K. Sasaki, M. Tsunekawa and T. Hirajima, J. Min. Mater. Process. Inst. Jpn 106 (4) (1990) 173.Google Scholar
  2. 2.
    H. Konno, K. Sasaki, M. Tsunekawa, T. Takamori and R. Furuichi, Bunseki Kagaku 40 (1991) 609.CrossRefGoogle Scholar
  3. 3.
    K. Sasaki, M. Tsunekawa, H. Konno, T. Hirajima and T. Takamori, J. Min. Mater. Process. Inst. Jpn 109 (1) (1993) 29.Google Scholar
  4. 4.
    K. Sasaki, Geochim. Cosmochim. Acta. submitted.Google Scholar
  5. 5.
    C. L. Wiersma and J. D. Rimstdt, ibid.—. 48 (1984) 85.CrossRefGoogle Scholar
  6. 6.
    M. A. McKibben and H. L. Barnes, ibid.—. 50 (1986) 1509.CrossRefGoogle Scholar
  7. 7.
    M. Inagaki, H. Furuhashi, T. Ozeki, H. Mugishima and S. Naka, J. Mater. Sci. 6 (1971) 1520.CrossRefGoogle Scholar
  8. 8.
    M. Inagaki, H. Furuhashi, T. Ozeki and S. Naka, ibid.8 (1973) 312.CrossRefGoogle Scholar
  9. 9.
    M. Inagaki, Y. Sasaki and M. Sakai, ibid.18 (1983) 1803.CrossRefGoogle Scholar
  10. 10.
    M. Inagaki, M. Toyoda and M. Sakai, ibid.22 (1987) 3459.CrossRefGoogle Scholar
  11. 11.
    M. Inagaki, Y. Sasaki and M. Sakai, ibid.22 (1987) 1657.CrossRefGoogle Scholar
  12. 12.
    M. Inagaki, T. Higashi, Y. Sasaki, M. Toyoda and M. Sakai, ibid.21 (1986) 566.CrossRefGoogle Scholar
  13. 13.
    M. Inagaki, in “Funryutai Kougaku”, edited by Kagaku Kougaku Kyoukai (Makishoten, Tokyo, 1985) p. 75.Google Scholar
  14. 14.
    Y. Nakamura, Bunseki 8 (1991) 613.Google Scholar
  15. 15.
    S. Hirano and H. Sasuga, Bunseki Kagaku 8 (1959) 495.CrossRefGoogle Scholar
  16. 16.
    S. Kato, “X-ray diffraction analysis” (Uchidaroukakuho, Tokyo, 1991) p. 78.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • K. Sasaki
    • 1
  • H. Konno
    • 1
  • M. Inagaki
    • 1
  1. 1.Faculty of EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations