Advertisement

Journal of Materials Science

, Volume 29, Issue 6, pp 1662–1665 | Cite as

The size effect of the martensitic transformation in ZrO2-containing ceramics

  • Jinbiao Tu
  • Bohong Jiang
  • T. Y. Hsu
  • Jiaxiang Zhong
Papers

Abstract

The relationship between the starting temperature of the martensitic transformation, Ms, and the grain size of the parent phase, d, in ZrO2-containing ceramics was investigated. The experimental results showed that in tetragonal zirconia polycrystals doped with CeO2 (8 mol%) and Y2O3 (0.25 mol%) (8Ce, 0.25Y-TZP), the Ms temperature displays a linear relationship with d−1/2, its slope being negative. A new explanation for this phenomenon, the so-called the size effect, has been presented, in which the grain size of the parent phase affects the Ms temperature through the strength of the parent phase. Thermodynamic calculation of the relationship between Ms and d gives a result consistent with the experimental ones.

Keywords

Polymer Grain Size Zirconia Linear Relationship CeO2 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. C. Garvie, J. Phys. Chem. 69 (1965) 1238.Google Scholar
  2. 2.
    R. H. J. Hannink, K. A. Johnston, R. T. Pascoe and R. C. Garvie, Adv. Ceram. 3 (1981) 116.Google Scholar
  3. 3.
    R. H. J. Hannink, J. Mater. Sci. 13 (1978) 2487.Google Scholar
  4. 4.
    P. E. Reyes-Morel, J. S. Cherng and I-Wei Chen, J. Am. Ceram. Soc. 71 (1988) 648.Google Scholar
  5. 5.
    R. C. Garvie, J. Phys. Chem. 82 (1978) 218.Google Scholar
  6. 6.
    R. C. Garvie and M. V. Swain, J. Mater. Sci. 20 (1985) 1193.Google Scholar
  7. 7.
    R. C. Garvie, ibid.20 (1985) 3479.Google Scholar
  8. 8.
    R. C. Garvie and M. F. Goss, ibid.21 (1986) 1253.Google Scholar
  9. 9.
    A. G. Evans, N. Burlingame, M. Drong and W. M. Kriven, Acta. Metall. 29 (1981) 447.Google Scholar
  10. 10.
    F. F. Lange, J. Mater. Sci. 17 (1982) 225.Google Scholar
  11. 11.
    C. A. Anderson and T. K. Gupta, Adv. Ceram. 3 (1981) 184.Google Scholar
  12. 12.
    A. H. Heuer, N. Claussen, W. M. Kriven and M. Kuhle, J. Am. Ceram. Soc. 65 (1982) 642.Google Scholar
  13. 13.
    A. H. Heuer and M. Ruhle, Acta. Metall. 33 (1985) 2101.Google Scholar
  14. 14.
    I. W. Chen and Y. M. Chias, ibid.31 (1983) 1627.Google Scholar
  15. 15.
    I. W. Chen and Y. H. Chiao, ibid.33 (1985) 1827.Google Scholar
  16. 16.
    I. W. Chen, Y. H. Chiao and K. Tsuzaki, ibid.33 (1985) 1847.Google Scholar
  17. 17.
    R. C. Garvie, J. Mater. Sci. 12 (1977) 1487.Google Scholar
  18. 18.
    R. C. Garvie and S. K. Chen, Phys. B 150 (1988) 203.Google Scholar
  19. 19.
    T. Y. Hsu (Xu Zuyao), J. Mater. Sci. 20 (1985) 23.Google Scholar
  20. 20.
    Jianxin Wu, Bohong Jiang and T. Y. Hsu (Xu Zuyao), Acta. Metall. 36 (1986) 1521.Google Scholar
  21. 21.
    H. Holmes, E. Jr Fuller and R. Gammage, J. Phys. Chem. 76 (1972) 1497.Google Scholar
  22. 22.
    J. E. Bailey, Proc. Roy. Soc. A 279 (1964) 395.Google Scholar
  23. 23.
    Jin-Fong Tsai, Cheng-Sheng Yu and Dinesh K. Shetty, J. Am. Ceram. Soc. 73 (1990) 2992.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Jinbiao Tu
    • 1
  • Bohong Jiang
    • 1
  • T. Y. Hsu
    • 1
  • Jiaxiang Zhong
    • 2
  1. 1.Department of Materials ScienceShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.Department of Mechanical EngineeringBeijing Institute of TechnologyBeijingPeople’s Republic of China

Personalised recommendations