Journal of Materials Science

, Volume 29, Issue 6, pp 1656–1661 | Cite as

Oxidation behaviour and effects of oxidation on the strength of SiC-whisker reinforced alumina

  • Hyoun -Ee Kim
  • A. J. Moorhead


The oxidation behaviour and effect of oxidation on the strength of a SiC-whisker-reinforced-alumina composite material (Al2O3-SiCw) were investigated. The oxidation mechanism of the composite material was determined by thermogravimetric analysis (TGA) and compositional analysis. Changes in the fracture strength and surface morphology were also determined and related to the oxidation mechanism. Weight changes of samples exposed to flowing Ar with various levels of oxygen partial pressure, PO2 at 1400 °C were monitored continuously with a microbalance. Changes in strength were measured after exposure to flowing Ar with different PO2 at 1400 °C for various periods of time. The PO2-range employed in this experiment was from 5×10−7 to 1×10−3 MPa. In contrast to the oxidation behaviour of monolithic SiC materials, weight gains were detected for the whole PO2-range investigated. However, despite the weight gains in the low PO2-region (PO2 < 1 × 10-5 MPa), significant reductions in strength were observed which were apparently due to the loss of SiC whiskers from the sample surface via the formation of volatile SiO. This SiO gas reacted with the Al2O3 matrix to form a non-protective aluminosilicate glass on the surface, resulting in a linear weight gain with time. In the high PO2-region, typical parabolic weight gains were observed as a result of the formation of an aluminosilicate glass on the surface by a reaction between SiO2, formed by the oxidation of SiC whiskers, and the matrix alumina. The observed increases in strength of the specimens with exposure are believed to be due to blunting of existing surface flaws with a product oxide.


Al2O3 Weight Gain Thermogravimetric Analysis Oxygen Partial Pressure Fracture Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. F. Becher and G. C. Wei, J. Amer. Ceram. Soc. 67 (1984) C-267.CrossRefGoogle Scholar
  2. 2.
    L. Bjork and A. G. Hermansson, ibid.72 (1984) 1436.CrossRefGoogle Scholar
  3. 3.
    J. Homeny, W. L. Vaughn and M. K. Ferber, Amer. Ceram. Soc. Bull. 66 (1987) 333.Google Scholar
  4. 4.
    P. F. Becher, C. H. Hsueh, P. Angelini and T. N. Tiegs, J. Amer. Ceram. Soc. 71 (1988) 1050.CrossRefGoogle Scholar
  5. 5.
    T. N. Tiegs and P. F. Becher, ibid.70 (1987) C-109.CrossRefGoogle Scholar
  6. 6.
    E. R. Billman, P. K. Mehrotra, A. F. Shuster and C. W. Beeghly, Amer. Ceram. Soc. Bull. 67 (1988) 1016.Google Scholar
  7. 7.
    M. T. Sykes, R. O. Scattergood and J. L. Routbort, Composites 18 (1987) 153.CrossRefGoogle Scholar
  8. 8.
    A. H. Chokshi and J. R. Porter, J. Amer. Ceram. Soc. 68 (1985) C-144.CrossRefGoogle Scholar
  9. 9.
    P. F. Becher, P. Angelini, W. H. Warwick and T. N. Tiegs, ibid.73 (1990) 91.CrossRefGoogle Scholar
  10. 10.
    A. R. Arellano-Lopez, F. L. Cumbrera, A. Dominguez-Rodriguez, K. C. Goretta and J. L. Routbort, ibid.73 (1990) 1297.CrossRefGoogle Scholar
  11. 11.
    H. T. Lin and P. F. Becher, ibid.73 (1990) 1378.CrossRefGoogle Scholar
  12. 12.
    A. J. Moorhead and H. -E. Kim, Ceram. Engng. Sci. Proc. 10 (1989) 1854.CrossRefGoogle Scholar
  13. 13.
    E. A. Gulbransen and S. A. Jansson, Oxid. Metals 4 (1972) 181.CrossRefGoogle Scholar
  14. 14.
    T. E. Easler, R. C. Bradt and R. E. Tressler, J. Amer. Ceram. Soc. 64 (1981) 731.CrossRefGoogle Scholar
  15. 15.
    D. S. Park, M. J. McNallan, C. Park and W. W. Liang, ibid.73 (1990) 1323.CrossRefGoogle Scholar
  16. 16.
    J. W. Hinze and H. C. Graham, J. Electrochem. Soc. 123 (1976) 1066.CrossRefGoogle Scholar
  17. 17.
    H. -E. Kim and D. W. Readey, in “Ceramics transactions”, Vol. 2, Silicon Carbide '87, edited by J. D. Cawley and C. E. Semler (American Ceramic Society, Westerville, OH, 1989) pp. 301–12.Google Scholar
  18. 18.
    N. S. Jacobson, A. J. Eckel, A. K. Misra and D. L. Humphrey, J. Amer. Ceram. Soc. 73 (1990) 2330.CrossRefGoogle Scholar
  19. 19.
    H. -E. Kim and A. J. Moorhead, ibid.73 (1990) 694.CrossRefGoogle Scholar
  20. 20.
    Idem., ibid., 73 (1990) 1868.CrossRefGoogle Scholar
  21. 21.
    Idem., ibid., 73 (1990) 3007.CrossRefGoogle Scholar
  22. 22.
    P. F. Becher and T. N. Tiegs, Adv. Ceram. Mater. 3 (1988) 148.CrossRefGoogle Scholar
  23. 23.
    K. L. Luthra and H. D. Park, J. Amer. Ceram. Soc. 73 (1990) 1014.CrossRefGoogle Scholar
  24. 24.
    H. -E. Kim and A. J. Moorhead, ibid.74 (1991) 1354.CrossRefGoogle Scholar
  25. 25.
    C. Wagner, J. Appl. Phys. 29 (1958) 1295.CrossRefGoogle Scholar
  26. 26.
    M. D. Drory and A. G. Evans, J. Amer. Ceram. Soc. 73 (1990) 634.CrossRefGoogle Scholar
  27. 27.
    H. -E. Kim and A. J. Moorhead, ibid.— accepted for publication.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Hyoun -Ee Kim
    • 1
  • A. J. Moorhead
    • 1
  1. 1.Metals and Ceramics DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations