Advertisement

Journal of Materials Science

, Volume 29, Issue 6, pp 1636–1645 | Cite as

Fibre/matrix interactions in magnesium-based composites containing alumina fibres

  • Fazal-Ur-Rehman
  • S. Fox
  • H. M. Flower
  • D. R. F. West
Papers

Abstract

An investigation has been made of composites with magnesium-based matrices CPMg, AZ61 and AZ91 reinforced with Safimax low-density (LD), standard-density (SD) and RF Saffil alumina fibres, using either a squeeze or a gas-pressure casting route. Detailed investigations of structural features have been made using SEM, TEM and EDX analysis. The overall extent of reaction between matrix and fibre was affected by the volume fraction of fibres and (locally) by the formation of metal channels between fibre bundles. Fibre microstructure and porosity are the key features which significantly influence the extent of chemical interaction. LD (Safimax) alumina fibres were fully reacted and cannot be employed to produce liquid-metal infiltrated composites, unless a method to stabilize or protect the fibres can be found. In the case of SD Safimax fibres, the metal/ceramic interaction produced a considerable penetration of magnesium into the fibres. However, there was negligible chemical reaction in composites containing RF Saffil alumina fibres.

Keywords

Polymer Alumina Microstructure Porosity Magnesium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Mortensen, L. J. Masur, J. A. Cornie and M. C. Flemings, Metall. Trans. 20A (1989) 2535.CrossRefGoogle Scholar
  2. 2.
    L. J. Masur, A. Mortensen, J. A. Cornie and M. C. Flemings, ibid.20A (1989) 2548.Google Scholar
  3. 3.
    A. McMinn, R. A. Page and W. Wei, ibid.18A (1987) 273.CrossRefGoogle Scholar
  4. 4.
    T. W. Clyne, M. G. Bader, G. R. Cappleman and P. A. Hubert, J. Mater. Sci. 20 (1985) 85.CrossRefGoogle Scholar
  5. 5.
    T. W. Clyne, in “Proceedings of ICCM6-ECCM2”, edited by F. L. Matthews (Elsevier Applied Science, London, 1987) pp. 275–85.Google Scholar
  6. 6.
    J. M. Chiou and D. D. L. Chung, J. Mater. Sci 26 (1991) 2583.CrossRefGoogle Scholar
  7. 7.
    S. Fox, H. M. Flower and D. R. F. West, unpublished work (1989–90).Google Scholar
  8. 8.
    D. J. Towle and C. M. Friend, J. Mater. Sci. 27 (1991) 2781.CrossRefGoogle Scholar
  9. 9.
    C. R. Cappleman, J. F. Watts and T. W. Clyne, ibid.20 (1985) 2159.CrossRefGoogle Scholar
  10. 10.
    M. Fishkis, ibid.26 (1991) 2651.CrossRefGoogle Scholar
  11. 11.
    M. Pfiefer, J. M. Rigsbee and K. K. Chawla, ibid.25 (1990) 1563.CrossRefGoogle Scholar
  12. 12.
    M. H. Stacey, Mater. Sci. Technol. 4 (1984) 227.CrossRefGoogle Scholar
  13. 13.
    J. E. Hack, R. A. Page and G. R. Leverant, Metall. Trans. 15A (1984) 1389.CrossRefGoogle Scholar
  14. 14.
    S. J. Swindlehurst and I. W. Hall, in “Proceedings of the International Symposium on Cast Reinforced MMCs”, edited by S. G. Fishman and A. K. Dhingra, (ASM, 1988) pp. 281–7.Google Scholar
  15. 15.
    C. J. Levi, G. J. Abaschian and R. Mehrabian, Metall. Trans. 9A (1978) 697.CrossRefGoogle Scholar
  16. 16.
    K. U. Kainer, Mater. Sci. Eng. A135 (1991) 243.CrossRefGoogle Scholar
  17. 17.
    A. Magata and I. W. Hall, J. Mater. Sci. 24 (1989) 1959.CrossRefGoogle Scholar
  18. 18.
    C. S. Lee, J. M. Rigsbee, K. K. Chawla and M. Pfiefer, in “Proceedings of the International Symposium on Cast Reinforced MMCs”, edited by S. G. Fishman and A. K. Dhingra (ASM, 1988) pp. 301–7.Google Scholar
  19. 19.
    S. Ochiai and Y. Murakumi, J. Mater. Sci. 14 (1979) 831.CrossRefGoogle Scholar
  20. 20.
    A. G. Metcalfe and M. J. Klein. Compos. Mater. 1 (1974) 125.Google Scholar
  21. 21.
    A. J. Reeves, H. Dunlop and T. W. Clyne, Metall. Trans. 23A (1992) 977.CrossRefGoogle Scholar
  22. 22.
    P. W. Petrasek and J. W. Weeton, Trans. Metall. Soc. AIME 230 (1964) 977.Google Scholar
  23. 23.
    D. W. Heitman, L. A. Shepard and T. H. Courtney, J. Mech. Phys. Solids 21 (1973) 75.CrossRefGoogle Scholar
  24. 24.
    S. Ochiai, M. Mizuhara and Y. Murakumi, J. Jpn. Inst. Metals 37 (1973) 208.CrossRefGoogle Scholar
  25. 25.
    J. E. Hack, R. A. Page and G. R. Leverant, ibid.15A (1984) 1397.Google Scholar
  26. 26.
    S. P. Rawal and M. S. Misra, in “Proceedings of ICCM6-ECCM2”, Vol. 2, edited by F. L. Matthews (Elsevier Applied Science, London, 1987) pp. 169–82.Google Scholar
  27. 27.
    J. E. Hack, R. A. Page and R. Sherman, ibid—.in pp. 2069–77.Google Scholar
  28. 28.
    J. Dinwoodie and I. Horsfall, ibid—.in, pp. 390–401.Google Scholar
  29. 29.
    J. L. Murray, J. Bull. Alloy Phase Diag. 3 (1) (1982) 60.CrossRefGoogle Scholar
  30. 30.
    E. T. Turkdogan, “Physics and Chemistry of High Temperature Technology” (Academic Press, London, 1980).Google Scholar
  31. 31.
    O. Kubachewski and C. B. Alcock, “Metallurgical Thermochemistry”, 5th Edn, (Pergamon, London, 1979) pp. 378, 381–382.Google Scholar
  32. 32.
    S. Fox, H. M. Flower and D. R. F. West, “Proceedings of ECCM-4”, September 1990, Stuggart, FRG.Google Scholar
  33. 33.
    W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to ceramics”, 2nd Edn. (Wiley, Lond., 1986) pp. 240, 385–90, 407–11.Google Scholar
  34. 34.
    S. P. Rawal and M. S. Misra, in “Proceedings of Interfaces in Polymer, Ceramic and MMCs”, edited by H. Ishida (Elsevier Applied Science, New York, 1988) 179–87.Google Scholar
  35. 35.
    Q. F. Li, D. G. McCartney and A. M. Walker, J. Mater. Sci. 26 (1991) 3565.CrossRefGoogle Scholar
  36. 36.
    A. Mortensen and I. Jin, Int. Mater. Rev. 37 (2) (1992) 101.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Fazal-Ur-Rehman
    • 1
  • S. Fox
    • 1
  • H. M. Flower
    • 1
  • D. R. F. West
    • 1
  1. 1.Department of MaterialsImperial CollegeLondonUK

Personalised recommendations