Journal of Materials Science

, Volume 29, Issue 6, pp 1629–1635 | Cite as

Laser surface refinement of YBa2Cu3Ox superconductor

  • C. H. S. Shih
  • P. A. Molian
  • R. W. McCallum
  • U. Balachandran


A novel laser-processing technique that produces bulk YBa2Cu3Ox (1 2 3) plates has been developed. Through the application of a square CO2 laser beam with uniform energy density distribution to the surface of 1 2 3 powder compact, a single piece of ribbon-like plate is produced. This plate may be separated from the powder compact after laser scanning. The width of the plate is ≈ 6 mm, while its thickness is 0.1–0.2 mm. Powder X-ray diffraction indicates that laser-treated samples contain both orthorhombic and tetragonal 1 2 3 phases, as well as Y2O3 (2 0 0), Y2BaCuO5 (2 1 1), BaCuO2 (0 1 1), and CuO (0 0 1) phases. Scanning electron microscopy reveals a pattern of phase segregation along the transverse cross-section after solidification of the plate. After oxygen annealing of a single ribbon piece, Tc is found to be 90 K. This technique may be applicable to the mass production of 1 2 3 bulk superconductor by continuous melting of 1 2 3 powders. In addition to its potential for practical applications, the laser technique also helps to explain the complex phases and microstructure formation during melting and solidification of laser-melted 1 2 3 liquid. A model relating the microstructure to the thermal history inside the laser-affected region and to the phase diagram of incongruently melting 1 2 3 material has been developed to analyse phase formation during laser melting and solidification processes. Reasonable correspondence between theoretical analysis and experimental results was obtained.


Powder Compact Y2O3 Laser Surface Oxygen Annealing Phase Segregation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Yarar, J. Trefny, F. Schowengerdt, N. Mitra and G. Pine, Adv. Ceram. Mater. 2 (1987) 372.CrossRefGoogle Scholar
  2. 2.
    D. C. Larbalestier, D. Maeumling, X. Cai and J. Seuntjens, J. Appl. Phys. 62 (1987) 3308.CrossRefGoogle Scholar
  3. 3.
    S. Jin, R. C. Sherwood, T. H. Tiefel, R. B. Vandover, D. W. Johnson and G. S. Grader, Appl. Phys. Lett. 51 (1987) 855.CrossRefGoogle Scholar
  4. 4.
    S. Jin, T. Tiefel, R. Sherwood, R. Vandover, M. Davis, G. Kammlott and R. Fastnacht, Phys. Rev. B 37 (1988) 7850.CrossRefGoogle Scholar
  5. 5.
    S. Jin, T. H. Tiefel, R. C. Sherwood, M. E. Davis, R. D. Vandover, G. W. Kammlott and H. D. Keith, Appl. Phys. Lett. 52 (1988) 2074.CrossRefGoogle Scholar
  6. 6.
    S. Jin, R. Sherwood, E. Gyorgy, E. Tiefel, R. Vandover, S. Nakahara, R. Fastnacht and M. Davis, ibid.54 (1989) 584.CrossRefGoogle Scholar
  7. 7.
    J. D. Alford, W. J. Birchall, W. J. Clegg and K. Kendall, J. Appl. Phys. 65 (1989) 2856.CrossRefGoogle Scholar
  8. 8.
    Y. Yang, S. Ashworth, C. Beduz, R. G. Scurlock, R. Webb and Z. Yi, Supercond. Sci. Technol. 3 (1990) 282.CrossRefGoogle Scholar
  9. 9.
    M. Murakami, M. Morita and N. Koyama, Jpn J. Appl. Phys. 28 (1989) 1125.CrossRefGoogle Scholar
  10. 10.
    S. X. Dou, H. K. Liu, M. H. Apperley, K. H. Song and C. C. Sorrell, Supercond. Sci. Technol. 3 (1990) 138.CrossRefGoogle Scholar
  11. 11.
    S. W. Hsu, K. Chen and W. H. Lee, Solid State Commun. 75 (1990) 799.CrossRefGoogle Scholar
  12. 12.
    D. Gazit and R. S. Feigelson, J. Cryst. Growth 91 (1988) 318.CrossRefGoogle Scholar
  13. 13.
    M. Levinson, S. P. Shah and D. Y. Wang, Appl. Phys. Lett. 55 (1989) 1683.CrossRefGoogle Scholar
  14. 14.
    X. Jiang, X. Huang, Y. Yu, M. Jiang, G. Qiao, G. Ge, Z. Hu, C. Shi, Y. Zhao, Y. Wang, G. Xu and Y. Zhou, Supercond. Sci. Technol. 1 (1988) 102.CrossRefGoogle Scholar
  15. 15.
    Z. Xu, P. D. Han, L. Chang, A. Shana and D. A. Payne, J. Mater. Res. 15 (1990) 39.CrossRefGoogle Scholar
  16. 16.
    G. Hofer, W. Kleinlein and B. C. Friedrich, Acta Metall. 44 (1990) 1142.Google Scholar
  17. 17.
    U. Varshney, R. L. Churchill, J. M. Glass and A. I. Kingon, Supercond. Sci. Technol. 3 (1990) 385.Google Scholar
  18. 18.
    U. Balachandran, R. B. Poeppel, J. E. Emerson, S. A. Johnson, M. T. Lanagan, C. A. Youngdahl, D. Shi, K. C. Goretta and N. G. Eror, Mater. Lett. 8 (1989) 454.CrossRefGoogle Scholar
  19. 19.
    J. H. Lienhard (ed.), “A Heat Transfer Textbook”, 2nd Edn (Prentice Hall, Boston, 1987) pp. 67–9.Google Scholar
  20. 20.
    B. J. Chen, M. A. Rodriguez, S. T. Misture and R. L. Snyder, Phys. C 198 (1992) 118.CrossRefGoogle Scholar
  21. 21.
    T. J. Folkerts, M. J. Kramer, K. W. Dennis and R. W. McCallum, J. Mater. Res. 6 (1991) 2035.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • C. H. S. Shih
    • 1
  • P. A. Molian
    • 1
  • R. W. McCallum
    • 1
    • 2
  • U. Balachandran
    • 3
  1. 1.Department of Mechanical EngineeringIowa State UniversityAmesUSA
  2. 2.Ames Laboratory, Department of Materials Science and EngineeringIowa State UniversityAmesUSA
  3. 3.Energy Technology DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations