Journal of Materials Science

, Volume 29, Issue 6, pp 1623–1628 | Cite as

Practical applications of the electron theory to improve physical and mechanical properties of engineering materials

  • A. A. Ogwu
  • T. J. Davies


A brief account is given of the origin and development of the electron theory and its successful application to improving physical and mechanical properties of a range of materials, including hard metals, metal-ceramic bonding, intermetallics and steels. As the nature of the bonding in solids, i.e. metallic, semi-conductor or insulator, determines both their mechanical and electronic properties, it is suggested that a theory linking both properties is desirable. The development of such a theory could be the basis of a better understanding of the mechanical properties of solids and the production of new materials for various technological applications.


Polymer Mechanical Property Technological Application Electronic Property Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Hagg, Z. Phys. Chem. B6 (1929) 221.Google Scholar
  2. 2.
    I. N. Levine, “Quantum Chemistry”, 4th edn (Prentice Hall, 1991) p. 282.Google Scholar
  3. 3.
    Idem, ibid. p. 285.Google Scholar
  4. 4.
    E. Wigner and F. Seitz, Phys. Rev. 43 (1933) 804.CrossRefGoogle Scholar
  5. 5.
    L. Pauling, “The nature of the chemical bond”, 2nd edn (Cornell University Press, New York, 1940).Google Scholar
  6. 6.
    R. Ahmed and S. Ahmed, Mater. Sci. Tech. 7 (1991) 1076.CrossRefGoogle Scholar
  7. 7.
    N. W. Aschcroft, Phys. Rev. B 39 (1989) 10552.CrossRefGoogle Scholar
  8. 8.
    N. F. Mott, Proc. Phys. Soc. A 62 (1949) 416.CrossRefGoogle Scholar
  9. 9.
    N. A. Gokcen, “Statistical Thermodynamics of alloys” (Plenum Press, New York, 1986) p. 237.CrossRefGoogle Scholar
  10. 10.
    P. Hohenberg and W. Kohn, Phys. Rev. B 136 (1964) 864.CrossRefGoogle Scholar
  11. 11.
    W. Kohn and L. J. Sham, Phys. Rev. 140 (1965) A1133.CrossRefGoogle Scholar
  12. 12.
    P. Villars, J. Less-Common Metals (1985) 102.Google Scholar
  13. 13.
    D. G. Pettifor, Mater. Sci. Tech. 4 (1988) 675.CrossRefGoogle Scholar
  14. 14.
    A. A. Ogwu and T. J. Davies, J. Mater. Sci. 28 (1993) 3145.CrossRefGoogle Scholar
  15. 15.
    D. A. Troitskii and V. I. Likhtman, Dokl. Akad. Nauk, SSSR 148 (1963) 332.Google Scholar
  16. 16.
    O. A. Troitskii, V. I. Spitsyn, N. V. Sokolov and V. G. Ryzkov, Phys. Stat. 501 (1978) 85.Google Scholar
  17. 17.
    K. Okazaki, M. Kagawa and H. Conrad, Scripta Met. 12 (1978) 1063.CrossRefGoogle Scholar
  18. 18.
    J. J. Gilman, J. Mater. Res. 7 (1992) 535.CrossRefGoogle Scholar
  19. 19.
    G. M. Pharr, W. C. Oliver and D. S. Harding, ibid.6 (1991) 1129.CrossRefGoogle Scholar
  20. 20.
    W. Yandong, Z. Zuqing and C. Guoliang, Trans. Non-ferrous Metals Soc. China 2 (1992) 47.Google Scholar
  21. 21.
    J. M. Guilemany, F. Peregrin, F. C. Lovey, N. Llorca and E. Cesari, Mater. Characterisation 26 (1991) 23.CrossRefGoogle Scholar
  22. 22.
    P. M. Huisman-Kleinherenbrink, J. Jian and J. Beyer, Materials Lett. II (1991) 145.CrossRefGoogle Scholar
  23. 23.
    M. Morinaga, N. Yukawa and H. Ezaki, Phil. Mag. A 51 (1985) 223.CrossRefGoogle Scholar
  24. 24.
    Y. Murata, K. Koyama, Y. Matsumoto, M. Morinaga and N. Yukawa, ISIJ Int. 30 (1990) 927.CrossRefGoogle Scholar
  25. 25.
    T. J. Davies and A. A. Ogwu, presented at the International Conference on Advances in Hard Materials Production, Bonn, Germany, May 1992, paper 19.Google Scholar
  26. 26.
    A. A. Ogwu and T. J. Davies, J. Mater. Sci. 27 (1992) 5382.CrossRefGoogle Scholar
  27. 27.
    A. A. Ogwu and T. J. Davies, Mater. Sci. Tech. 9 (1993) 213.CrossRefGoogle Scholar
  28. 28.
    J. Friedel, in “The physics of metals” edited by J. M. Ziman (Cambridge University Press, Cambridge, 1969).Google Scholar
  29. 29.
    E. Dempsey, Phil. Mag. III (1963) 285.CrossRefGoogle Scholar
  30. 30.
    Jian-Guo Li, J. Amer. Ceram. Soc. 75 (1992) 3118.CrossRefGoogle Scholar
  31. 31.
    R. H. French, ibid.73 (1990) 477.CrossRefGoogle Scholar
  32. 32.
    T. Paxton, Physics World, Nov (1992) 35.Google Scholar
  33. 33.
    M. Yamaguchi and Y. Umakoshi, Prog. Mater. Sci. 34 (1990).Google Scholar
  34. 34.
    R. A. Varin and M. B. Winnica, Mater. Sci. Engng A137 (1991) 83.Google Scholar
  35. 35.
    R. W. Cahn, MRS Bull. May (1991) 18.Google Scholar
  36. 36.
    F. H. Froes, C. Suryanarayana and D. Eliezer, J. Mater. Sci. 27 (1992) 5113.CrossRefGoogle Scholar
  37. 37.
    C. L. Fu, J. Mater. Res. 5 (1990) 971.CrossRefGoogle Scholar
  38. 38.
    A. H. Cottrell, Mater. Sci. Tech. 7 (1991) 981.CrossRefGoogle Scholar
  39. 39.
    M. A. Baranov and M. D. Starostenkov, Phys. Metals Metall. 74 (1992) 328.Google Scholar
  40. 40.
    A. A. Ogwu and T. J. Davies, J. Mater. Sci. 28 (1993) 847.CrossRefGoogle Scholar
  41. 41.
    D. G. Pettifor and A. H. Cottrell (eds), “Electron theory in alloy design” (Institute of Materials, London, 1992) p. 285.Google Scholar
  42. 42.
    Z. L. Liu, C. C. Liu, L. M. Zhao, R. L. Zhang and B. Wang, Science in China (Series A) 32 (1989) 867.Google Scholar
  43. 43.
    Z. L. Liu, H. J. Niu, C. F. Jin and B. Wang, Chinese Sci. Bull. 34 (1989) 100.Google Scholar
  44. 44.
    Z. L. Liu, T. S. Dai and Y. B. Qu, ibid.—.Google Scholar
  45. 45.
    A. A. Ogwu and T. J. Davies, Mater. Sci. Tech. in press.Google Scholar
  46. 46.
    T. J. Davies and A. A. Ogwu, Mater. Sci. Tech. in press.Google Scholar
  47. 47.
    J. Hubbard, Proc. R. Soc. A 276 (1963) 238.CrossRefGoogle Scholar
  48. 48.
    Idem, ibid., 281 (1964) 401.CrossRefGoogle Scholar
  49. 49.
    A. Askar, “Lattice dynamical foundations of continuum theories” (World Scientific Publishing, 1985) p. 10.Google Scholar
  50. 50.
    K. Kondo, in Proceedings of the 2nd Japanese National Congress Applied Mechanics, Tokyo (1952).Google Scholar
  51. 51.
    B. A. Bilby, R. Bullough and E. Smith, Proc. R. Soc. Lond. A231 (1955) 263.Google Scholar
  52. 52.
    A. Kadic and D. G. B. Edelen, “A gauge theory of dislocations”, Lecture Notes in Physics No. 174 (Springer-Verlag, Berlin, 1983).CrossRefGoogle Scholar
  53. 53.
    A. Golebiewska-Lasota, Int. J. Engng Sci. 17 (1979) 329.CrossRefGoogle Scholar
  54. 54.
    W. J. Moore, “Seven Solid States” (W. A. Benjamin, Menlo Park, California, 1967) p. 62.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • A. A. Ogwu
    • 1
  • T. J. Davies
    • 1
  1. 1.Manchester Materials Science CentreManchester University/UMISTManchesterUK

Personalised recommendations