Journal of Materials Science

, Volume 29, Issue 6, pp 1617–1622 | Cite as

Microstructure and crystallization behaviour of TiO2 precursor prepared by the sol-gel method using metal alkoxide

  • K. Terabe
  • K. Kato
  • H. Miyazaki
  • S. Yamaguchi
  • A. Imai
  • Y. Iguchi


TiO2 precursors were prepared by the sol-gel method using titanium tetraisopropoxide. The effects of water and hydrochloric acid addition for the hydrolysis and polymerization reaction on the crystal lattice or the molecular structure, and on the crystallization behaviour of prepared precursors, were examined by using Raman, and infrared spectroscopy, X-ray diffraction, DTA-TG and carbon analysis. The quantity of unhydrolysed alkyls in precursors decreased with increasing amounts of H2O and HCl addition, but the alkyls always remained. Raman spectroscopy revealed that the molecular structure of prepared amorphous precursors resembled that of the anatase phase with increased H2O and HCl addition. On the crystallization process of these precursors, the ratio of anatase formed at 310 °C was influenced by residual unhydrolysed alkyls. Steric hindrance by the residual alkyls preventing crystallization to crystalline anatase was observed, and there was estimated to be 2.5 mol of octahedral coordination of Ti-O per 1 mol of residual alkyls. It is noted that crystallization of the anatase phase and the transformation from anatase to the rutile phase were also observed on long-term ageing of precursors at room temperature.


Crystallization Rutile Raman Spectroscopy Alkoxide Polymerization Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Dislich, Angew. Chem. Internat. Edit. 10 (1971) 363.CrossRefGoogle Scholar
  2. 2.
    R. Roy, Science 238 (1987) 1664.CrossRefGoogle Scholar
  3. 3.
    M. Kumagai and G. Messing, J. Amer. Ceram. Soc. 68 (1985) 500.CrossRefGoogle Scholar
  4. 4.
    E. A. Barringer and H. K. Bowen, ibid.65 (1982) C199.CrossRefGoogle Scholar
  5. 5.
    T. Ikemoto, K. Uematsu, N. Mizutani and M. Kato, Yogyo-Kyoukai-shi 93 (1985) 55.CrossRefGoogle Scholar
  6. 6.
    K. Kato, in “Ceramic Transactions”, Vol. 22 (Ceramic Powder Science-IV) (American Ceramic Society, Westervill, Ohio, 1991) p. 63.Google Scholar
  7. 7.
    B. E. Yoldas, J. Mater. Sci. 21 (1986) 1087.CrossRefGoogle Scholar
  8. 8.
    K. Kamiya, K. Tanimoto and T. Yoko, J. Mater. Sci. Lett. 5 (1986) 402.CrossRefGoogle Scholar
  9. 9.
    T. Yoko, K. Kamiya and S. Sakka, Yogyo-Kyoukai-shi 95 (1987) 12.Google Scholar
  10. 10.
    M. Ocaña, J. V. Garcia-Ramos and C. J. Serna, J. Amer. Ceram. Soc. 75 (1992) 2010.CrossRefGoogle Scholar
  11. 11.
    G. J. Exarhos, J. Vac. Soc. Technol A 4 (1986) 2962.CrossRefGoogle Scholar
  12. 12.
    M. Ocaña, V. Fornes, J. V. Garcia Ramos and C. J. Serna, J. Solid State Chem. 75 (1988) 364.CrossRefGoogle Scholar
  13. 13.
    C. A. Melendres, A. Narayanaswamy, V. A. Maroni and R. W. Siegel, J. Mater. Res. 4 (1989) 1246.CrossRefGoogle Scholar
  14. 14.
    A. Turković, M. Inanda, A. Drašner, V. Vraneša and M. Peršin, Thin Solid Films 198 (1991) 199.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • K. Terabe
    • 1
  • K. Kato
    • 1
  • H. Miyazaki
    • 1
  • S. Yamaguchi
    • 1
  • A. Imai
    • 2
  • Y. Iguchi
    • 1
  1. 1.Department of Materials Science and EngineeringNagoya Institute of Technology, Gokiso-choNagoyaJapan
  2. 2.Nagoya Municipal Industrial Research InstituteNagoyaJapan

Personalised recommendations