Journal of Materials Science

, Volume 29, Issue 6, pp 1601–1611 | Cite as

Numerical simulation of semi-crystalline nylon 6: elastic constants of crystalline and amorphous parts

  • K. J. Hsia
  • Y. -B. Xin
  • L. Lin


The elastic responses of crystalline and amorphous parts in semi-crystalline nylon 6 have been determined by computer simulation using the finite element method. Semi-crystalline nylon 6 has been modelled as a composite consisting of alternating layers of lamellar crystals and amorphous regions. Full morphological details identified previously by Lin and Argon in highly textured nylon 6 bulk samples have been incorporated in the model. An optimization scheme has been employed to search systematically for the individual components' elastic constants which give rise to a composite elastic behaviour as that measured by Lin and Argon. A two-dimensional plane strain finite element analysis has been performed to evaluate the composite elastic behaviour for a given set of constituents' elastic constants. The resulting elastic constants of semi-crystalline nylon 6 for the optimized values of crystalline and amorphous elastic properties were within 6% average error with the experimental data. The computations also revealed that a high stress concentration exists in the crystalline region. Therefore, experimental measurements of plastic resistance may represent a significant underestimate of the intrinsic critical resolved shear strength of polymer crystals.


Finite Element Method Shear Strength Elastic Constant Amorphous Region Elastic Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Lin and A. S. Argon, Macromolecules 25 (1992) 4011.CrossRefGoogle Scholar
  2. 2.
    E. L. V. Lewis and I. M. Ward, J. Polym. Sci. Polym. Phys. Ed. 27 (1989) 1357.CrossRefGoogle Scholar
  3. 3.
    C. L. Choy, W. P. Leung and E. L. Ong, ibid.26 (1988) 1569.CrossRefGoogle Scholar
  4. 4.
    I. M. Ward, “Mechanical Properties of Solid Polymers”, 2nd Edn (Wiley Interscience, New York, 1985).Google Scholar
  5. 5.
    L. Lin and A. S. Argon, J. Mater. Sci., accepted.Google Scholar
  6. 6.
    M. Born and T. Huang, “Dynamical Theory of Crystal Lattices” (Clarendon Press, Oxford, 1956).Google Scholar
  7. 7.
    K. Tashiro, M. Kobayashi and H. Tadokoro, Macromolecules 11 (1978) 908.CrossRefGoogle Scholar
  8. 8.
    K. Tashiro and H. Tadokoro, ibid.14 (1981) 781.CrossRefGoogle Scholar
  9. 9.
    J. Clements, R. Jakeways and I. M. Ward, Polymer 19 (1978) 639.CrossRefGoogle Scholar
  10. 10.
    I. Sakurada and K. Kaji, Makromol. Chem. Suppl. 1 (1975) 599.CrossRefGoogle Scholar
  11. 11.
    I. Sakurada, T. Ito and K. Nakamae, J. Polym. Sci. C 15 (1966) 75.CrossRefGoogle Scholar
  12. 12.
    D. C. Prevorsek, Y. D. Kwon and R. K. Sharma, J. Mater. Sci. 12 (1977) 2310.CrossRefGoogle Scholar
  13. 13.
    Faraday Discussions of Chemical Society Vol. 68 (Faraday Division, Chem. Soc., London, 1979).Google Scholar
  14. 14.
    I. M. Ward, Proc. Phys. Soc. 80 (1967) 1176.CrossRefGoogle Scholar
  15. 15.
    S. W. Allison and I. M. Ward, Br. J. Appl. Phys. 18 (1967) 1151.CrossRefGoogle Scholar
  16. 16.
    V. B. Gupta and I. M. Ward, J. Macromol. Sci. B 1 (1967) 373.CrossRefGoogle Scholar
  17. 17.
    M. Takayanagi, K. Imada and T. Kajiyama, J. Polym. Sci. C 15 (1966) 263.CrossRefGoogle Scholar
  18. 18.
    E. L. V. Lewis and I. M. Ward, J. Macromol. Sci. Phys. B18 (1980) 1.CrossRefGoogle Scholar
  19. 19.
    J. C. Halpin and J. L. Kardos, J. Appl. Phys. 43 (1972) 2235.CrossRefGoogle Scholar
  20. 20.
    J. L. Kardos and J. Raisoni, Polym. Eng. Sci. 15 (1975) 183.CrossRefGoogle Scholar
  21. 21.
    T. T. Wang, J. Appl. Phys. 44 (1973) 2218.CrossRefGoogle Scholar
  22. 22.
    Idem, ibid., 44 (1973) 4052.CrossRefGoogle Scholar
  23. 23.
    Idem,, J. Polym. Sci. Polym. Phys. Ed. 12 (1974) 145.CrossRefGoogle Scholar
  24. 24.
    R. Hill, J. Mech. Phys. Solids 12 (1964) 199.CrossRefGoogle Scholar
  25. 25.
    Idem, ibid., 13 (1965) 189.CrossRefGoogle Scholar
  26. 26.
    J. J. Hermans, Proc. K. Ned. Akad. Wet. B70 (1967) 1.Google Scholar
  27. 27.
    K. Z. Kroner, Phys. 151 (1958) 504.CrossRefGoogle Scholar
  28. 28.
    A. V. Hershey, J. Appl. Mech. 21 (1954) 236.Google Scholar
  29. 29.
    E. H. Kerner, Proc. Phys. Soc. Lond. B69 (1956) 808.CrossRefGoogle Scholar
  30. 30.
    ABAQUS user's manual version 4.9, Hibbitt, Karlson and Sorensen, Inc., Providence, RI (1992).Google Scholar
  31. 31.
    D. C. Prevorsek, P. J. Harget and R. K. Scharma, J. Macromol. Sci. Phys. B3 (1973) 127.CrossRefGoogle Scholar
  32. 32.
    M. J. D. Powell, Compt. J. 7 (1964) 155.CrossRefGoogle Scholar
  33. 33.
    L. Lin, PhD thesis, Massachusetts Institute of Technology (1991).Google Scholar
  34. 34.
    W. P. Leung, K. H. Ho and C. L. Choy, J. Polym. Sci. Polym. Phys. Ed. 22 (1984) 1173.CrossRefGoogle Scholar
  35. 35.
    I. Sakurada and K. Kaji, J. Polym. Sci. C 31 (1970) 57.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • K. J. Hsia
    • 1
  • Y. -B. Xin
    • 1
  • L. Lin
    • 2
  1. 1.Department of Theoretical and Applied MechanicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations