Advertisement

Journal of Materials Science

, Volume 29, Issue 6, pp 1595–1600 | Cite as

Effect of grain boundary phase on the thermal conductivity of aluminium nitride ceramics

  • Ching -Fong Chen
  • M. E. Perisse
  • A. F. Ramirez
  • N. P. Padture
  • H. M. Chan
Papers

Abstract

AIN with high thermal conductivity was fabricated by pressureless sintering with Y2O3 as the sintering aid. The thermal conductivity was observed to increase with sintering time (up to 8 h) at 1810 °C. The distribution of the sintering aid was identified as one of the major factors influencing the thermal conductivity in AIN. Non-uniform distribution of the grain boundary phase was found to be associated with a significant amount of porosity, resulting in the enhancement of phonon scattering and thereby lowering the thermal conductivity.

Keywords

Polymer Aluminium Porosity Thermal Conductivity Nitride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Kuramoto and H. Taniguchi, J. Mater. Sci. Lett. 3 (1984) 471.CrossRefGoogle Scholar
  2. 2.
    W. Werdecker and F. Aldinger, IEEE Trans. Compon. Hybrids Manuf. Technol. CHMT-7 (4) (1984) 399.CrossRefGoogle Scholar
  3. 3.
    C.-F. Chen, in Proceedings of IEPS 9th Annual International Electronic Package Conference, San Diego, 1989 (The American Ceramic Soc., Westerville, OH) p. 1291.Google Scholar
  4. 4.
    M. P. Borom, G. A. Slack and J. W. Szymaszek, Amer. Ceram. Bull. 51 (1972) 852.Google Scholar
  5. 5.
    G. A. Slack, J. Phys. Chem. Solids 34 (1973) 321.CrossRefGoogle Scholar
  6. 6.
    G. A. Slack, R. A. Tanzilli, R. O. Pohl and J. W. Vandersande, ibid.48 (1987) 641.CrossRefGoogle Scholar
  7. 7.
    N. Kuramoto, H. Taniguchi and I. Aso, IEEE Trans. Compon. Hybrids Manuf. Techol. 9 (1986) 386.CrossRefGoogle Scholar
  8. 8.
    Idem,, Amer. Ceram. Bull. 68 (1989) 883.Google Scholar
  9. 9.
    Y. Kurokawa, K. Utsumi and H. Takamizawa, J. Amer. Ceram. Soc. 71 (1988) 588.CrossRefGoogle Scholar
  10. 10.
    M. F. Denanot and J. Rabier, J. Mater. Sci. 24 (1989) 1594.CrossRefGoogle Scholar
  11. 11.
    L. Weisenbach, J. A. S. Ikeda and Y.-M. Chiang, in “Ceramic Substrates and Packages for Electronic Applications”, Advances in Ceramics Vol. 26, edited by M. F. Yan, H. M. O'Bryan Jr, K. Niwa and W. S. Young, p. 133.Google Scholar
  12. 12.
    A. V. Virkar, T. B. Jackson and R. A. Cutler, J. Amer. Ceram. Soc. 72 (1989) 2031.CrossRefGoogle Scholar
  13. 13.
    C.-F. Chen and E. Savrun, in “Materials and Processes for Microelectronic Systems”, Ceramic Transactions Vol. 15, edited by K. M. Nair, R. Pohanka and R. C. Buchanan (The American Ceramic Soc., Westerville, OH, 1991) p. 193.Google Scholar
  14. 14.
    D. P. H. Hasselman and G. A. Merkel, J. Amer. Ceram. Soc. 72 (1989) 967.CrossRefGoogle Scholar
  15. 15.
    W. J. Parker, R. J. Jenkins, C. P. Butler and G. L. Abbott, J. Appl. Phys. 32 (1961) 1679.CrossRefGoogle Scholar
  16. 16.
    R. E. Taylor, Report PB-225 591 (NTIS, US Department of Commerce, Springfield, VA, 1973).Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Ching -Fong Chen
    • 1
  • M. E. Perisse
    • 1
  • A. F. Ramirez
    • 1
  • N. P. Padture
    • 2
  • H. M. Chan
    • 2
  1. 1.Keramont CorporationTucsonUSA
  2. 2.Lehigh UniversityBethlehemUSA

Personalised recommendations