Journal of Materials Science

, Volume 29, Issue 6, pp 1575–1580 | Cite as

Growth of tubular boron nitride filaments

  • P. Gleize
  • M. C. Schouler
  • P. Gadelle
  • M. Caillet


Considering the similarity between graphite and hexagonal boron nitride (h-BN) structures, this study aims to elaborate boron nitride filaments analogous to filamentous carbon. Filamentous carbon is obtained by decomposition of a hydrocarbon coming into contact with a metal belonging to the iron family. Dissolving carbon in this metal leads to the precipitation of filamentous carbon around metallic grains. In the case of h-BN, the metallic phase may be zirconium owing to the solubility of C and N in this metal, although in practice it is easier to use ZrB2. BN filaments were obtained when B2H6 and NH3 (or N2) came into contact with this compound (or borides of related metals) at temperatures around 1100 °C. Nevertheless it has been shown that BN filaments also occurred in the absence of B2H6; therefore the boron of the filaments originates in the boride. TEM observations showed that BN filaments exhibit structure, morphology and dimensions (φ∼0.1 μm, L∼1–10 μm) analogous to those of C filaments, although the formation mechanisms are different.


Precipitation Graphite Zirconium Boron Hydrocarbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Endo and K. Komaki, in Proceedings of the 16th Biennial Conference on Carbon, San Diego, June 1983 edited by R. J. Price and G. B. Engle (American Carbon Society) p. 523.Google Scholar
  2. 2.
    M. Coulon, N. Kandani, L. Bonnetain and J. Maire, French Patent N∘ 84.06365 (1984).Google Scholar
  3. 3.
    J. R. Bradley and G. G. Tibbetts, Carbon 23 (1985) 423.CrossRefGoogle Scholar
  4. 4.
    F. Benissad, PhD Thesis, Grenoble, 1986.Google Scholar
  5. 5.
    M. Hillert and N. Lange, Z. Krist. 24 (1958) 111.Google Scholar
  6. 6.
    A. Oberlin, M. Endo and T. Koyama, J. Cryst. Growth 32 (1976) 335.CrossRefGoogle Scholar
  7. 7.
    F. Benissad, P. Gadelle, M. Coulon and L. Bonnetain, Carbon 26 (1988) 61.CrossRefGoogle Scholar
  8. 8.
    R. T. K. Baker and P. S. Harris, in “Chemistry and Physics of Carbon”, Vol. 14, edited by P. L. Jr. Walker and P. A. Thrower (Marcel Dekker, New York, 1978) p. 83.Google Scholar
  9. 9.
    M. Audier, A. Oberlin, M. Oberlin, M. Coulon and L. Bonnetain, Carbon 19 (1981) 217.CrossRefGoogle Scholar
  10. 10.
    A. Jr. Sacco, in “Carbon Fibers, Filaments and Composites”, edited by J. L. Figueiredo, C. A. Bernardo, R. T. K. Baker and K. J. Huttinger (Nato Asi Series Vol. 177, Kluwer, Dordrecht, 1989) p. 459.Google Scholar
  11. 11.
    G. A. Jablonsky, F. W. Geurts, A. Jr. Sacco and R. Biederman, Carbon 30 (1992) 87.CrossRefGoogle Scholar
  12. 12.
    M. Audier and M. Coulon, ibid.23 (1985) 317.CrossRefGoogle Scholar
  13. 13.
    G. G. Tibbetts, J. Cryst. Growth 66 (1984) 632.CrossRefGoogle Scholar
  14. 14.
    E. Rudy and F. Benesovsky, Mon. Chemie 92 (1961) 424.Google Scholar
  15. 15.
    P. Gleize, S. Herreyre, P. Gadelle, M. Mermoux, N. C. Cheynet and L. Abello, submitted to J. Mater. Sci. Lett. Google Scholar
  16. 16.
    T. Ishii, T. Sato, Y. Sekikawa and M. Iwata, J. Cryst. Growth 52 (1981) 285.CrossRefGoogle Scholar
  17. 17.
    F. Seon, French Patent N∘ 88-08579 (1988).Google Scholar
  18. 18.
    L. Bsenko and T. Lundstrom, J. Less-Common Metals 34 (1974) 273.CrossRefGoogle Scholar
  19. 19.
    P. Rogl and P. E. Potter, CALPHAD 12 (1988) 191.CrossRefGoogle Scholar
  20. 20.
    S. Iijima, Nature 354 (1991) 56.CrossRefGoogle Scholar
  21. 21.
    P. Gadelle, in “Carbon Fibers, Filaments and Composites”, edited by J. L. Figueiredo, C. A. Bernardo, R. T. K. Baker and K. J. Huttinger (Nato Asi Series Vol. 177, Kluwer, Dordrecht, 1989) p. 95.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • P. Gleize
    • 1
  • M. C. Schouler
    • 1
  • P. Gadelle
    • 1
    • 2
  • M. Caillet
    • 1
  1. 1.Laboratoire Science des Surfaces et Matériaux CarbońesURA CNRS n∘ 413, Institut National Polytechnique de Grenoble, ENS d'Electrochimie et d'Electrométallurgie de Grenoble, BP 75-Domaine UniversitaireSAINT-MARTIN D'HÈRESFrance
  2. 2.Université Joseph FourierGrenobleFrance

Personalised recommendations