Advertisement

Journal of Materials Science

, Volume 29, Issue 6, pp 1558–1568 | Cite as

Effect of pH on 980 °C spinel phase-mullite formation of Al2O3-SiO2 gels

  • A. K. Chakravorty
Papers

Abstract

Different reaction paths of mullite formation via sol-gel processing techniques are reviewed. These variations are due to differences in hydrolysis/gelation behaviours of the silica and alumina components used. Variations of pH during processing without altering other variables follow three different routes of mullite formation. In the highly acidic region(pH ⩽ 1), the gel does not exhibit a 980 °C exotherm but forms γ-Al2O3. Mullite forms at high temperature by diminution of α-Al2O3 and β-cristobalite, respectively. In the pH range of 3–4.5, gels exhibit a 980 °C exotherm and develop only mullite. In the highly alkaline region (pH ∼ 14), the gel produces a Si-Al spinel phase at the 980 °C exotherm and mullite formation at the ∼ 1330 °C exotherm takes place from the intermediate Si-Al spinel phase.

Keywords

Polymer Alumina Material Processing Processing Technique Reaction Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Aksay, D. M. Dabbs and M. Sarikaya, J. Amer. Ceram. Soc. 74 (1991) 2343.CrossRefGoogle Scholar
  2. 2.
    R. Roy, ibid.39 (1956) 145.CrossRefGoogle Scholar
  3. 3.
    T. A. Wheat, J. Can. Ceram. Soc. 46 (1977) 11.Google Scholar
  4. 4.
    K. S. Mazdiyasni, Ceram. Int. 8 (1982) 42.CrossRefGoogle Scholar
  5. 5.
    M. D. Sacks, H. W. Lee and J. A. Pask, in “Ceramic Transactions”, Vol. 6, “Mullite and Mullite Matrix Composites”, edited by S. Somiya, R. F. Davis and J. A. Pask (American Ceramic Society, Westerville, Ohio, 1990) p. 167.Google Scholar
  6. 6.
    K. Okada, N. Ôtsuka and S. Sômiya, Bull. Amer. Ceram. Soc. 70 (1991) 1633.Google Scholar
  7. 7.
    S. Somiya and Y. Hirata, ibid.70 (1991) 1624.Google Scholar
  8. 8.
    H. Insley and R. H. Ewell, J. Res. Natl. Bur. Stand (U.S.) 14 (1935) 615.CrossRefGoogle Scholar
  9. 9.
    C. H. Horte and J. Wiegmann, Naturwissens Chaften 43 (1956) 9.CrossRefGoogle Scholar
  10. 10.
    T. Demediwk and W. F. Cole, Nature 181 (1958) 1400.CrossRefGoogle Scholar
  11. 11.
    J. D. Croft and W. W. Marshall, Trans. Brit. Ceram. Soc. 66 (1967) 121.Google Scholar
  12. 12.
    T. D. McGee and C. D. Wirkus, J. Amer. Ceram. Soc. 51 (1972) 577.Google Scholar
  13. 13.
    S. Kaneko, N. Mazuka and S. Suzuki, in Abstracts of the Annual Meeting of the Ceramic Society of Japan, (Ceramic Society of Japan, Tokyo, Japan, 1990) Paper No. 2D07.Google Scholar
  14. 14.
    J. Grofesik and E. Vago, in “Mullite. Its structure, Formation and Significance”, edited by J. Grofesik and F. Tamas (Publishing House of the Hungarian Academy of Sciences, Budapest, Hungary, 1961) p. 96.Google Scholar
  15. 15.
    H. Yamada and S. Kimura, Yogyo Kyokai Shi 70 (1972) 63.Google Scholar
  16. 16.
    A. K. Chakravorty and D. K. Ghosh, J. Amer. Ceram. Soc. 71 (1988) 978.CrossRefGoogle Scholar
  17. 17.
    T. Hiraicoa, K. Miyazaki, T. Kawanami and H. Ohnishi, in Abstracts of the Annual Meeting of the Ceramic Society of Japan (Ceramic Society of Japan, Tokyo, Japan, 1986) Paper No. 2C03.Google Scholar
  18. 18.
    S. Rajendran, H. J. Rossell and J. V. Sanders, J. Mater. Sci. 25 (1990) 4462.CrossRefGoogle Scholar
  19. 19.
    K. S. Mazdiyasni and L. M. Brown, J. Amer. Ceram. Soc. 55 (1972) 548.CrossRefGoogle Scholar
  20. 20.
    S. Prochazka and F. J. Klug, ibid.66 (1983) 874.CrossRefGoogle Scholar
  21. 21.
    K. Hamano, Z. Nakagawa, G. Cun-Ji and T. Sato, in “Mullite”, edited by S. Somiya (Uchida Rokakuho Publishing Co., Tokyo, Japan, 1985) p. 37.Google Scholar
  22. 22.
    B. E. Yoldas and D. P. Partlow, J. Mater. Sci. 23 (1988) 1895.CrossRefGoogle Scholar
  23. 23.
    J. A. Pask, X. W. Zhang, A. P. Tomsia and B. E. Yoldas, J. Amer. Ceram. Soc. 70 (1987) 704.CrossRefGoogle Scholar
  24. 24.
    Y. Hirata, K. Sakeda, Y. Matsushita and K. Shimada, Yogyo-Kyokai-Shi 93 (1985) 101.CrossRefGoogle Scholar
  25. 25.
    S. Mitachi, M. Matsuzawa and K. Kaneko, S. Kanzaki and H. Tabata, in “Ceramic Transactions”, Vol. 6. “Mullite and Mullite Matrix Composites”, edited by S. Somiya, R. F. Davis and J. A. Pask (American Ceramic Society, Westerville, Ohio, 1990) p. 275.Google Scholar
  26. 26.
    H. Suzuki, H. Saito, Y. Tomokiyo and Y. Suyama, ibid.—in p. 263.Google Scholar
  27. 27.
    J. Sanz, I. Sobrados, L. Cavalieri, P. Pena, S. De Aza and J. S. Moya, J. Amer. Ceram. Soc. 74 (1991) 2398.CrossRefGoogle Scholar
  28. 28.
    A. K. Chakravorty, ibid.62 (1979) 120.CrossRefGoogle Scholar
  29. 29.
    D. W. Hoffman, R. Roy and S. Komarmeni, ibid.67 (1984) 468.CrossRefGoogle Scholar
  30. 30.
    K. Okada and N. Ôtsuka, ibid.69 (1986) 652.CrossRefGoogle Scholar
  31. 31.
    H. Schneider and L. M. A. Sebald, J. Mater. Sci. 27 (1992) 805.CrossRefGoogle Scholar
  32. 32.
    D. X. Li and W. J. Thomson, J. Mater. Res. 6 (1991) 819.CrossRefGoogle Scholar
  33. 33.
    L. A. Paulick, Y. F. Yu and T. I. Mah, in “Ceramic Powder Science, Advances in Ceramics” Vol. 21, edited by G. L. Messing, K. S. Mazdiyasne, J. W. McCauley and R. A. Haber (American Ceramics Society, Westerville, Ohio, 1987) p. 121.Google Scholar
  34. 34.
    M. Yamane, S. Inoue and A. Yasumori, J. Non-Cryst. Solids 63 (1984) 13.CrossRefGoogle Scholar
  35. 35.
    C. S. Hsi, H. Y. Lu and F. S. Yen, J. Amer. Ceram. Soc. 72 (1989) 2208.CrossRefGoogle Scholar
  36. 36.
    A. K. Chakravorty, J. Mater. Res. (submitted).Google Scholar
  37. 37.
    R. C. Mackenzie (Ed.), in “Differential Thermal Analysis” Vol. 1 (Academic Press, London, 1970) p. 286.Google Scholar
  38. 38.
    H. R. Kruyt (ed) “Colloid Science” (Elsevier, New York, 1952) p. 26.Google Scholar
  39. 39.
    Y. Hirata, H. Minamizono and K. Shimada, Yogyo-Kyokai-Shi 93 (1985) 46.CrossRefGoogle Scholar
  40. 40.
    S. Komarneni, R. Roy, C. A. Fyfe and G. J. Kennedy, J. Amer. Ceram. Soc. 68 (1985) C-243.Google Scholar
  41. 41.
    P. C. Carman, Trans. Faraday Soc. 36 (1940) 964.CrossRefGoogle Scholar
  42. 42.
    M. W. Tamele, Disc. Faraday Soc. (1950) 270.Google Scholar
  43. 43.
    W. L. Dekeyser, in “Science of Ceramics” Vol. 2, edited by G. H. Stewart (Academic Press, London, 1965) p. 243.Google Scholar
  44. 44.
    T. A. Wheat, E. M. H. Sallam and A. C. D. Chaklader, Ceram. Int. 5 (1979) 42.CrossRefGoogle Scholar
  45. 45.
    T. Kumazawa, S. Ohta, S. Kanzaki and H. Tabata, in “Ceramic Transactions”, Vol. 6, “Mullite and Mullite Matrix Composites”, edited by S. Somiya, R. F. Davis and J. A. Pask (American Ceramic Society, Westerville, Ohio, 1990) p. 401.Google Scholar
  46. 46.
    C. S. Hsi, H. Y. Lu and F. S. Yen, J. Mater. Sci. 24 (1989) 2041.CrossRefGoogle Scholar
  47. 47.
    R. Snel, Appl. Catal. 12 (1984) 189.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • A. K. Chakravorty
    • 1
  1. 1.Central Glass & Ceramic Research InstituteIndia

Personalised recommendations