Advertisement

Journal of Materials Science

, Volume 29, Issue 6, pp 1545–1548 | Cite as

Effect of deposition temperature on dielectric properties of PECVD Ta2O5 thin film

  • Hwan Seong Moon
  • Jae Suk Lee
  • Sung Wook Han
  • Jong Wan Park
  • Jae Hak Lee
  • Seung Kee Yang
  • Hyung Ho Park
Papers

Abstract

Tantalum oxide film formation by plasma-enhanced chemical vapour deposition (PECVD) using TaCl5 as a source material was examined. The effects of deposition temperature on the formation, structure and electric properties of the Ta2O5 film were investigated for Al/Ta2O5/ p-Si (MTS) capacitors. The deposition rate and refractive index increased with increasing deposition temperature. It was found that the structure of Ta2O5 deposited by PECVD was amorphous as-deposited. However, crystalline δ-Ta2O5 of hexagonal structure was formed by a 700 °C, 1 h heat treatment in argon. Capacitance and relative dielectric constant of the PECVD Ta2O5 were found to be 2.54 fF μm−2 and 23.5, respectively. The PECVD films obtained in this study have higher dielectric constants and remarkably better general film characteristics than those obtained by other deposition methods.

Keywords

Refractive Index Dielectric Constant Dielectric Property Chemical Vapour Deposition Oxide Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Ohta, K. Yamada, K. Shimizu and Y. Tarui, IEEE Trans. Electron Device ED-29 (1982) 368.CrossRefGoogle Scholar
  2. 2.
    G.S. Oehrlein, F. M. D. D'Heurle and A. Reisman, J. Appl. Phys. 55 (1984) 3715.CrossRefGoogle Scholar
  3. 3.
    C. Hashimoto, H. Oikawa and N. Honma, in “Extended Abstracts of the 18th Conference on Solid State Device and Materials”, Tokyo, August 1986, edited by N. Micoshiba (The Japanese Society of Applied Physics, Tokyo, 1986) p. 86.Google Scholar
  4. 4.
    A. G. Revesz and J. F. Allison, IEEE Trans. Electron Device ED-5 (1976) 527.CrossRefGoogle Scholar
  5. 5.
    D. J. Smith and L. Young, ibid.ED-28 (1981) 22.CrossRefGoogle Scholar
  6. 6.
    S. Seki, T. Unagami and B. Tsujiyama, J. Electrochem. Soc. 131 (1984) 2621.CrossRefGoogle Scholar
  7. 7.
    H. Sunami, T. Kure, N. Hashimoto, K. Itoh, T. Toyabe and S. Asai, IEEE Electron Device Lett. EDL-4 (1983) 90.CrossRefGoogle Scholar
  8. 8.
    P. Miergeist, A. Spitzer and S. Rohi, IEEE Trans. Electron Device ED-36 (1989) 913.CrossRefGoogle Scholar
  9. 9.
    G.S. Oehrlein, Thin Solid Films 156 (1988) 207.CrossRefGoogle Scholar
  10. 10.
    M. Yoshimura, S. E. Yoo, M. Hayashi and N. Ishizawa, J. Jpn Appl. Phys. 28 (1989) 913.CrossRefGoogle Scholar
  11. 11.
    H. Sunami, T. Kure, N. Hashimoto, K. Itoh, T. Toyabe and S. Asai, IEEE Electron Device Lett. EDL-4 (1983) 90.CrossRefGoogle Scholar
  12. 12.
    P. Miergeist, A. Spitzer and S. Rohi, IEEE Trans. Electron Devices ED-36 (1989) 913.CrossRefGoogle Scholar
  13. 13.
    E. Szuki and Y. Hayashi, ibid.ED-33 (1986) 214.CrossRefGoogle Scholar
  14. 14.
    K. Gurtler, K. Bange, W. Wager, F. Rauch and H. Hantsche, Thin Solíd Films 175 (1989) 185.CrossRefGoogle Scholar
  15. 15.
    Y. Numasawa, S. Kamiwama, M. Zenke and M. Sakamoto, in International Electron Devices Meeting, Washington DC, Dec. 1989, edited by C. Sodini (Electron Society of IEEE, New York, 1989) p. 43.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Hwan Seong Moon
    • 1
  • Jae Suk Lee
    • 1
  • Sung Wook Han
    • 1
  • Jong Wan Park
    • 1
  • Jae Hak Lee
    • 2
  • Seung Kee Yang
    • 2
  • Hyung Ho Park
    • 3
  1. 1.Department of Metallurgical EngineeringHanyang UniversitySeoulKorea
  2. 2.Samsung Advanced Institute of TechnologyKorea
  3. 3.Electronics and Telecommunications Research InstituteKorea

Personalised recommendations