Advertisement

Journal of Materials Science

, Volume 29, Issue 6, pp 1533–1539 | Cite as

Fracture behaviour of Al-Zn-Mg/SiCp composites

  • N. V. Ravi Kumar
  • E. S. Dwarakadasa
Papers

Abstract

Al-Zn-Mg alloys reinforced with different volume fractions of SiC particulates were prepared by a liquid-metallurgy technique. The mechanical properties in uniaxial tension and compression were evaluated, and fractographic observations were made on the fracture surfaces. The distribution of SiC was quite uniform in the extruded condition, and the mechanical-property data show that the composite properties were inferior to those of the control alloy; they essentially showed a decreasing trend with increasing volume fractions. These observations can be explained in terms of the particle distribution, the porosity and the interfacial characteristics.

Keywords

Polymer Mechanical Property Porosity Fracture Surface Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. P. Divecha, S. G. Fishman and S. D. Karmarkar, J. Metall. 33 (1981) 12.Google Scholar
  2. 2.
    D. L. McDanels, NASA technical paper 2302 (July 1984).Google Scholar
  3. 3.
    S. V. Nair, J. K. Tien and R. C. Bates, Int. Met. Rev. 30 (1985) 275.CrossRefGoogle Scholar
  4. 4.
    J. H. Vaccari, Amer. Mach. (1991) 42.Google Scholar
  5. 5.
    P. K. Rohatgi, J. Metall. 43 (1991) 10.Google Scholar
  6. 6.
    W. H. Hunt Jr, C. R. Cook and R. R. Sawtell, in International Congress and Exposition, Detroit, Michigan, Society for Automotive Engineers (SAE) Technical Paper Series 910834 (1981).Google Scholar
  7. 7.
    T. H. Jr Sanders and J. T. Staley, in “Fatigue and microstructure” edited by M. Meshii (American Society for Metals, Metals Park, OH, 1979) p. 467.Google Scholar
  8. 8.
    M. Manoharan and J. J. Lewandowski, Acta Metall. Mater. 38 (1990) 489.CrossRefGoogle Scholar
  9. 9.
    Jian Ku Shang and R. O. Ritchie, Acta Metall. 37 (1989) 2267.CrossRefGoogle Scholar
  10. 10.
    U. T. S. Pillai and R. K. Pandey, Comp. Sci. Technol. 40 (1991) 333.CrossRefGoogle Scholar
  11. 11.
    D. J. Lloyd, H. Lagace, A. McLead and F. L. Morris, Mater. Sci. Eng. A 107 (1989) 73.CrossRefGoogle Scholar
  12. 12.
    T. Christman and S. Suresh, Acta Metall. 36 (1988) 1691.CrossRefGoogle Scholar
  13. 13.
    H. Lagace and D. J. Lloyd, Can. Met. Quart. 28 (1989) 145.CrossRefGoogle Scholar
  14. 14.
    F. J. Humphreys, in “Mechanical and physical behaviour of metallic and ceramic composites”, edited by S. I. Anderson, H. Lilholt and O. B. Pedersen (Riso National Laboratory, Denmark, 1988) p. 51.Google Scholar
  15. 15.
    M. Strangwood, C. A. Hippsley and J. J. Lewandowski in “Low density, high temperature powder metallurgy alloys”, TMS-AIME Fall meeting, Detroit, MI; (TMSAIME, Warrandale, PA, 1990).Google Scholar
  16. 16.
    J. L. Petty-Gallis and R. D. Goolsby, J. Mater. Sci. 24 (1989) 1439.CrossRefGoogle Scholar
  17. 17.
    V. D. Scott, R. L. Trumper and Ming Young Comp. Sci. Tech. 42 (1991) 251.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • N. V. Ravi Kumar
    • 1
  • E. S. Dwarakadasa
    • 1
  1. 1.Structure-Property Correlations Group, Department of MetallurgyIndian Institute of ScienceBangaloreIndia

Personalised recommendations