Journal of Materials Science

, Volume 29, Issue 6, pp 1527–1532 | Cite as

Novel approaches in the melt-texturing of YBa2Cu3O7−y

  • R. V. Kumar
  • D. J. Fray
  • H. W. Williams
  • A. Misson
  • J. E. Evetts


Electrochemically pre-textured samples have been subjected to melt-processing in order to produce dense and highly textured bulk samples of YBa2Cu3O7−y (YBCO). Full oxygenation of these samples has been achieved at high processing temperatures of 720 °C by electrochemical titration, in order to increase the superconducting transition temperature to > 89 K. These samples show a large magnetic hysteresis, and the value of Jc calculated using the Bean model is in the range 4000–6000 A cm−2 at 77 K and 1 tesla magnetic field, and is independent of the applied field in that range. In another variation of the melt-processing technique — referred to as “isothermal melt-textured growth” — highly textured samples have been produced by the movement of the solidification front at a constant temperature in an oxygen activity gradient.


Titration Material Processing Applied Field Processing Temperature Bulk Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Chaudhary, R. M. Koch, R. B. Laibowitz, J. R. McGuire and R. J. Gambino, Phys. Rev. Lett. 58 (1987) 2684.CrossRefGoogle Scholar
  2. 2.
    L. F. Scheenmeyer, E. M. Gyorgy and J. V. Waszezak, Phys. Rev. 34B (1981) 8804.Google Scholar
  3. 3.
    R. V. Kumar, D. J. Fray, J. E. Evetts, H. W. Williams and A. Misson, J. Electrochem Soc. 43 (1993) 1285.Google Scholar
  4. 4.
    S. R. Su, M. O'Connor and M. Levinson, J. Mater. Res., 6 (1991) 244.CrossRefGoogle Scholar
  5. 5.
    P. Reginier, L. Chaffron, X. Descharels and L. Schmirgeld, in Proceedings of the 7th CIMTEC World Ceramic Congress, Satellite Symposium 4, HTC Superconductors, Trieste, 2–5 July 1990.Google Scholar
  6. 6.
    R. Ramesh, Nature 346 (1990) 420.CrossRefGoogle Scholar
  7. 7.
    F. K. Lotgering, J. Inorg. Nucl. Chem. 9 (1959) 113.CrossRefGoogle Scholar
  8. 8.
    S. Jin and J. E. Graebner, Mater. Sci. and Engng. B7 (1991) 243.CrossRefGoogle Scholar
  9. 9.
    S. Jin, J. Metals 43 (1991) 7.Google Scholar
  10. 10.
    P. J. McGinn, W. Chen and N. Zhu, J. Metals 43 (1991) 26.Google Scholar
  11. 11.
    M. Murukami, M. Morita and N. Koyama, Jpn J. Appl. Phys. 26 (1989) L1125.CrossRefGoogle Scholar
  12. 12.
    K. Salama, V. Selvamanickam, L. Gao and K. Sun, Appl. Phys. Lett. 54 (1989) 2352.CrossRefGoogle Scholar
  13. 13.
    B-J. Lee and D. N. Lee, J. Amer. Ceran. Soc. 74 (1991) 78.CrossRefGoogle Scholar
  14. 14.
    Idem ibid.,, J. Amer. Ceran. Soc. 72 (1989) 314.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • R. V. Kumar
    • 1
  • D. J. Fray
    • 1
  • H. W. Williams
    • 2
  • A. Misson
    • 2
  • J. E. Evetts
    • 2
  1. 1.Department of Mining and Mineral EngineeringUniversity of LeedsLeedsUK
  2. 2.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK

Personalised recommendations