Advertisement

Journal of Materials Science

, Volume 29, Issue 6, pp 1507–1513 | Cite as

Sintering of (Ca1−x, Mgx)Zr4(PO4)6 ceramics

  • Dean -Mo Liu
Papers

Abstract

Densification and grain growth of (Ca1−x, Mgx)Zr4(PO4)6 (CMZP; where x=0.0, 0.1, and 0.4) ceramics at the intermediate stage of sintering have been investigated. A lattice-diffusion model proposed by Coble with tetrakaidecahedron as a grain shape was employed and appears to be applicable to the sintering of CMZP. The apparent diffusion coefficient of the CMZP ceramics for x=0.0 is lower by approximately three and one orders of magnitude than for x=0.1 and x=0.4, respectively. The grain growth in CMZP at the intermediate stage of sintering follows a third-power kinetics, i.e. n=3. A modified expression using the lattice-diffusion model associated with grain-growth kinetics has been derived which makes the microstructures of CMZP controllable.

Keywords

Polymer Microstructure Diffusion Coefficient Apparent Diffusion Coefficient Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. E. Lenain, H. A. McKinstry, J. Alamo and D. K. Agrawal, J. Mater. Sci. 22 (1987) 17.CrossRefGoogle Scholar
  2. 2.
    J. Alamo and R. Roy, ibid.21 (1986) 444.CrossRefGoogle Scholar
  3. 3.
    S. Y. Limaye, D. K. Agrawal and H. A. McKinstry, J. Am. Ceram. Soc. 70 (1987) c232.CrossRefGoogle Scholar
  4. 4.
    S. J. Bennism and M. P. Harmer, in “Ceramic Transaction”, Vol. 7, “Sintering of Advanced Ceramics”, edited by C. A. Handwerker, J. E. Blendell and W. A. Kagsser (American Ceramic Society, 1990) pp. 13–49.Google Scholar
  5. 5.
    T. K. Gupta and R. L. Coble, J. Am. Ceram. Soc. 51 (1968) 521.CrossRefGoogle Scholar
  6. 6.
    R. M. Spriggs, L. A. Brissetle and T. Vasilos, ibid.47 (1964) 417.CrossRefGoogle Scholar
  7. 7.
    Idem, ibid., 46 (1963) 508.CrossRefGoogle Scholar
  8. 8.
    T. E. Clare, ibid.49 (1966) 159.CrossRefGoogle Scholar
  9. 9.
    M. J. Bamnister, J. Nucl. Mater. 14 (1964) 315.CrossRefGoogle Scholar
  10. 10.
    R. L. Coble, J. Appl. Phys. 32 (1961) 793.CrossRefGoogle Scholar
  11. 11.
    R. L. Coble and T. K. Gupta, in “Sintering and Related Phenomena”, edited by G. C. Kuczynski, N. A. Hroton and C. F. Gibbon (Gordon and Breach, New York, 1967) pp. 423–41.Google Scholar
  12. 12.
    D. Turnbull, J. Metals 3 Trans. AIME 191 (1951) 661.Google Scholar
  13. 13.
    W. D. Kingery and B. Francois, J. Am. Ceram. Soc. 48 (1965) 546.CrossRefGoogle Scholar
  14. 14.
    R. L. Coble, J. Appl. Phys. 36 (1965) 2327.CrossRefGoogle Scholar
  15. 15.
    T. Y. Tien and E. C. Subbarao, J. Am. Ceram. Soc. 46 (1963) 489.CrossRefGoogle Scholar
  16. 16.
    W. H. Rhodes and R. E. Carter, Am. Ceram. Soc. Bull. 41 (1962) 283.Google Scholar
  17. 17.
    S. M. Van Aken, MS thesis, Virginia Polytechnic Institute and State University (1990).Google Scholar
  18. 18.
    J. E. Burke, J. Am. Ceram. Soc. 40 (1957) 80.CrossRefGoogle Scholar
  19. 19.
    J. H. Rosolowski and C. Greskovich, ibid.58 (1975) 177.CrossRefGoogle Scholar
  20. 20.
    D. M. Liu, J. Mater. Sci. 28 (1993) 6353.CrossRefGoogle Scholar
  21. 21.
    D. M. Liu and J. J. Jr. Brown, J. Mater. Chem. Phys. 33 (1993) 43.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Dean -Mo Liu
    • 1
  1. 1.Materials Research LaboratoriesIndustrial Technology Research InstituteChutungTaiwan

Personalised recommendations