Advertisement

Journal of Materials Science

, Volume 29, Issue 6, pp 1455–1461 | Cite as

Creep-sintering of polycrystalline ceramic particulate composites

  • R. E. Dutton
  • M. N. Rahaman
Papers

Abstract

The sintering of particulate composites consisting of a polycrystalline zinc oxide matrix with 10 vol % zirconia inclusions of two different sizes (3 and 14 μm) was investigated at a constant heating rate of 4 °C min−1 under an applied stress of ≈ 300 kPa. The presence of the inclusions produced a decrease in both the creep rate and the densification rate but the ratio of the densification to creep rate remained constant during the experiment. The ratio of the densification rate to creep rate for the composites was ≈ 1.5 times greater than that of the unreinforced matrix regardless of inclusion size. The creep viscosity of the composites was higher than that of the unreinforced matrix and increased slightly with decreasing inclusion size.

Keywords

Viscosity Zinc Zirconia Applied Stress Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. L. Fan and M. N. Rahaman, J. Am. Ceram. Soc. 75 (1992) 2056.CrossRefGoogle Scholar
  2. 2.
    C. L. Hu and M. N. Rahaman, ibid.75 (1992) 2066.CrossRefGoogle Scholar
  3. 3.
    M. N. Rahaman and L. C. de Jonghe, ibid.73 (1990) 602.CrossRefGoogle Scholar
  4. 4.
    Idem,, Acta Metall. 36 (1988) 223.CrossRefGoogle Scholar
  5. 5.
    Idem,, J. Mater. Sci. 22 (1987) 4326.CrossRefGoogle Scholar
  6. 6.
    Idem,, J. Am. Ceram. Soc. 70 (1987) C-348.CrossRefGoogle Scholar
  7. 7.
    W. Beere, Acta Metall. 23 (1975) 131.CrossRefGoogle Scholar
  8. 8.
    Idem, ibid., 23 (1975) 139.CrossRefGoogle Scholar
  9. 9.
    J. M. Vieira and R. J. Brook, J. Am. Ceram. Soc. 67 (1984) 245.CrossRefGoogle Scholar
  10. 10.
    R. E. Dutton and M. N. Rahaman, ibid.75 (1992) 2146.CrossRefGoogle Scholar
  11. 11.
    G. W. Scherer, ibid.70 (1987) 719.CrossRefGoogle Scholar
  12. 12.
    B. Budiansky, J. Mech. Phys. Solids 13 (1965) 223.CrossRefGoogle Scholar
  13. 13.
    R. M. Christensen, ibid.38 (1990) 379.CrossRefGoogle Scholar
  14. 14.
    M. N. Rahaman, L. C. de Jonghe and R. J. Brook, J. Am. Ceram. Soc. 69 (1986) 53.CrossRefGoogle Scholar
  15. 15.
    T. K. Gupta and R. L. Coble, ibid.51 (1968) 521.CrossRefGoogle Scholar
  16. 16.
    M.-Y. Chu, L. C. de Jonghe and M. N. Rahaman, Acta Metall. 37 (1989) 1415.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • R. E. Dutton
    • 1
  • M. N. Rahaman
    • 1
  1. 1.Department of Ceramic EngineeringUniversity of Missouri-RollaRollaUSA

Personalised recommendations