Advertisement

Journal of Materials Science

, Volume 29, Issue 6, pp 1441–1448 | Cite as

Determination of residual stresses in bimaterials

  • G. Dreier
  • G. Elssner
  • S. Schmauder
  • T. Suga
Papers

Abstract

Residual stresses play a prominent role in the fracture process of bimaterials and therefore knowing these stresses prior to failure is important for understanding the mechanical behaviour of bimaterials. A critical assessment has been made of three methods for determining the residual stresses. These methods are: stress optical measurement, indentation method, and finite element method. With stress optical measurements the difference in the principal normal stresses, Δσ, can be determined. In the centre region adjacent to the interface, the measured stress values are in agreement with results from a simple analytical formula for the normal residual stresses parallel to the interface. Surface stresses at arbitrary locations can be obtained by the usual indentation technique. At the surface, stresses perpendicular to the interface are dominant and have the opposite sign to the stresses parallel to the interface. When there is no mechanical mismatch between the components the magnitude of the residual stresses can be estimated with the above-mentioned formula. Two-dimensional plane strain finite element calculations are in good agreement with the stress optical measurements.

Keywords

Residual Stress Finite Element Method Plane Strain Measured Stress Analytical Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Elssner, T. Suga and M. Turwitt, J. de Phys. 46 (1985) C4–597.Google Scholar
  2. 2.
    K. Suganuma, T. Okamoto, M. Koizumi and M. Shimada, J. Mater. Sci. Lett. 4 (1985) 648.CrossRefGoogle Scholar
  3. 3.
    A. G. Evans, M. Rühle and M. Turwitt, J. de Phys. 46 (1985) C4–657.Google Scholar
  4. 4.
    K. Mizuno, K. Miyazawa and T. Suga, J. Faculty Eng. Univ. Tokyo 39B (1988) 401.Google Scholar
  5. 5.
    D. R. Mulville, P. W. Mast and R. N. Vaishnav, Eng. Fract. Mech. 8 (1976) 555.CrossRefGoogle Scholar
  6. 6.
    G. Dreier, M. Meyer, S. Schmauder and G. Elssner, Acta Metall. Mater. (1991) in press.Google Scholar
  7. 7.
    K. Fink and C. Rohrbach, “Handbuch der Spannungs- und Dehnungsmessung” (VDI, Düsseldorf, 1978) p. 220.Google Scholar
  8. 8.
    H. Wolf, “Spannungsoptik” (Springer, Berlin 1961) p. 582.CrossRefGoogle Scholar
  9. 9.
    A. Kuske, “Taschenbuch der Spannungsoptik” (Wissenschaftliche Verlagsgesellschaft, Stuttgart, 1971) p. 513.Google Scholar
  10. 10.
    N. N., “Bestimmung der Spannungen in Verschmelzungen von Glas mit Glas”, DIN 52327, Teil 1 (1977).Google Scholar
  11. 11.
    Marc Clement, Schott glass company, private communication (1991).Google Scholar
  12. 12.
    S. Schmauder, in “Acta Scripta Metallurgica Proceedings Series 4,” edited by M. Rühle, A. G. Evans, M. F. Ashby, J. P. Hirth (Pergamon Press, Oxford, 1990) p. 413.Google Scholar
  13. 13.
    A. G. Evans, M. C. Lu, S. Schmauder and M. Rühle, Acta Metall. 34 (1986) 1634.Google Scholar
  14. 14.
    G. R. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall, J. Am. Ceram. Soc. 64 (1981) 533.CrossRefGoogle Scholar
  15. 15.
    J. C. Newman and I. S. Raju, Eng. Fract. Mech. 15 (1981) 185.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • G. Dreier
    • 1
  • G. Elssner
    • 1
  • S. Schmauder
    • 1
  • T. Suga
    • 2
  1. 1.Max-Planck-Institut für Metallforschung, Institut für WerkstoffwissenschaftStuttgart 1Germany
  2. 2.Research Center for Advanced Science and TechnologyUniversity of TokyoTokyoJapan

Personalised recommendations