Advertisement

Journal of Materials Science

, Volume 31, Issue 3, pp 741–747 | Cite as

Property-microstructure correlation in in situ formed Al2O3, TiB2 and Al3Ti mixture-reinforced aluminium composites

  • Z. Y. Ma
  • J. H. Li
  • S. X. Li
  • X. G. Ning
  • Y. X. Lu
  • J. Bi
Papers

Abstract

The in situ formed Al2O3, TiB2 and Al3Ti mixture-reinforced aluminium composites were successfully fabricated by the reaction sintering of the TiO2-B-Al system in a vacuum. With increasing boron content in the TiO2-B-Al system, the amount of generated TiB2 in the composites increased and Al3Ti content decreased. At the same time the distribution uniformity of the in situ formed Al2O3 and TiB2 particulates was obviously improved, and the size of the Al3Ti particles was reduced. The in situ Al2O3 and TiB2 particulates had sizes from 0.096–1.88 μm. The interface between the in situ formed particulates and the aluminium matrix was clean, and no consistent crystallographic orientation relationship was found. The strength and elastic modulus of the composites was significantly improved by lowering the Al3Ti content. When the boron content in the TiO2-B-Al system rose, the morphology of the tensile fracture surface of the composites was changed from large fractured Al3Ti blocks and fine dimples, to fine dimples and pulled-out particulates. The strengthening and fracture of the composites have been modelled.

Keywords

Al2O3 Boron Elastic Modulus Fracture Surface Orientation Relationship 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.R.C. WESTWOOD, Metall. Trans. 19A (1988) 749.CrossRefGoogle Scholar
  2. 2.
    A.K. KURUVILLA, K.S. PRASAD, V.V. BHANUPRASAD and Y.R. MAHAJAN, Scripta Metall Mater. 24 (1990) 873.CrossRefGoogle Scholar
  3. 3.
    H. FUKUNAGA, X. WANG and Y. ARAMAKI, J. Mater. Sci. Lett. 9 (1990) 23.Google Scholar
  4. 4.
    P.C. MAITY, S.C. PANIGRAHI and P.N. CHAKRABORTY, Scripta Metall. Mater. 28 (1993) 549.CrossRefGoogle Scholar
  5. 5.
    Z.Y. MA, J.H. LI, M. LUO, X.G. NING, Y.X. LU, J. BI and Y.Z. ZHANG, ibid. 31 (1994) 635.CrossRefGoogle Scholar
  6. 6.
    Z.Y. MA, J. BI, Y.X. LU, H.W. SHENG and Y.X. GAO, Acta Metall. Sinica 6B (1993) 122.Google Scholar
  7. 7.
    P. SAHOO and M.J. KOCZAK, Mater. Sci. Eng. A131 (1991) 69.CrossRefGoogle Scholar
  8. 8.
    G.M. VELETEL, J.E. ALLISON and D.C.V. AKEN, Metall. Trans. 24A (1993) 2545.CrossRefGoogle Scholar
  9. 9.
    R.J. ARSENAULT, Mater. Sci. Eng. 64 (1984) 171.CrossRefGoogle Scholar
  10. 10.
    E. OROWAN, in “Symposium on Internal Stress in Metals and Alloys” (Institute of Metals, 1948) p. 451.Google Scholar
  11. 11.
    D.J. LLOYD, Acta Metall. Mater. 39 (1991) 59.CrossRefGoogle Scholar
  12. 12.
    T. MOCHIDA, M. TAYA and D.J. LLOYD, Mater. Trans. JIM. 32 (1992) 931.CrossRefGoogle Scholar
  13. 13.
    J. LLORCA, Acta Metall. Mater. 43 (1995) 181.CrossRefGoogle Scholar
  14. 14.
    K. WALLIN, T. SAARIO and K. TÖRRÖNEN, Int. J. Fract. 32 (1987) 201.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Z. Y. Ma
    • 1
  • J. H. Li
    • 1
  • S. X. Li
    • 1
  • X. G. Ning
    • 1
  • Y. X. Lu
    • 1
  • J. Bi
    • 1
  1. 1.Laboratory of Atomic Imaging of Solids, Institute of Metal ResearchChinese Academy of SciencesShenyangPeople’s Republic of China

Personalised recommendations