Journal of Materials Science

, Volume 31, Issue 3, pp 727–730 | Cite as

The preparation and magnetic properties of Fe-Ag granular solid using a sol-gel method

  • Jian -Ping Wang
  • He -Lie Luo
  • Nai -Fei Gao
  • Yuan -Yuan Liu


The Fe-Ag granular metal solid samples with 10% and 30% weight iron have been successfully fabricated using a sol-gel method, which are characterized by X-ray diffraction and transmission electron micrography. The average diameters of iron particles are from about a few nanometres to a few tens of nanometres controlled by the reducing temperature. The evolution of magnetic properties and microstructure during heat treating are described in detail and explained by using the superparamagnetism, single domain and multi domain theories. The magnetic anisotropy of the Fe-Ag granular solid is studied by using the law of approach to saturation. It is found that the magnetic anisotropy constant is in the order of 105 J m−3 which is higher than the value of the bulk iron and increases with the increase of reducing temperature.


Iron Microstructure Magnetic Property Average Diameter Electron Micrography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. ABELES, in “Applied solid state science: Advances in materials and device research”, edited by R. WOLFE (Academic Press, New York, 1976) p. 1.Google Scholar
  2. 2.
    B. ABELES, P. SHENG, M. D. COUTS and Y. ARIE, Adv. Phys. 24 (1975) 407.CrossRefGoogle Scholar
  3. 3.
    C. L. CHIEN, J. Appl Phys. 69 (1991) 5267.CrossRefGoogle Scholar
  4. 4.
    G. XIAO, S. H. LIOU, A. LERY, J. N. TAYLOR and C. L. CHIEN, Phys. Rev. B 34 (1986) 7573.CrossRefGoogle Scholar
  5. 5.
    A. S. EDELSTEIN, B. N. DAS, R. L. HOLTZ, N. C. KOON, M. RUBINSTEIN, S. A. WOLF and K. E. KIHLSTORM, J. Appl. Phys. 61 (1987) 3320.CrossRefGoogle Scholar
  6. 6.
    A. TSOUKATOS and G. C. HADJIPANAYIS, Ibid. 70 (1991) 5891.CrossRefGoogle Scholar
  7. 7.
    A. CHATTERJEE, A. DATTA, Anit. K. GIRI, D. DAS and D. CHAKRAVORTY, Ibid. 72 (1992) 3832.CrossRefGoogle Scholar
  8. 8.
    R. A. ROY and R. ROY, Mater. Res. Bull. 19 (1984) 169.CrossRefGoogle Scholar
  9. 9.
    R. D. SHULL, J. J. RITTER, A. J. SHAPIRO, L. J. SWARTZENDRUBER and L. H. BENNETT, Mater. Res. Soc. Symp. Proc. 132 (1989) 179.CrossRefGoogle Scholar
  10. 10.
    Jian-Ping WANG and He-Lie LUO, J. Magn. Magn. Mater. 131 (1994) 54.CrossRefGoogle Scholar
  11. 11.
    B. D. CULLITY, “Elements of X-ray diffraction” (Addison-Wesley, Reading, MA, 1978) p. 100.Google Scholar
  12. 12.
    C. KITTLE, Phys. Rev. 70 (1946) 965.CrossRefGoogle Scholar
  13. 13.
    Kai-Yan HO, Xiang-Yuan XIONG, Jing ZHI, Li-Zhi CHENG, J. Appl. Phys. 74 (1993) 6788.CrossRefGoogle Scholar
  14. 14.
    S. GANGOPADHYAY, G. C. HADJIPANAYIS, B. DALE, C. M. SORENSEN, K. J. KLABUNDE, V. PAPAEFTHYMIOU and A. KOSTIKAS, Phys. Rev. B 45 (1992) 9778.CrossRefGoogle Scholar
  15. 15.

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Jian -Ping Wang
    • 1
  • He -Lie Luo
    • 1
  • Nai -Fei Gao
    • 2
  • Yuan -Yuan Liu
    • 2
  1. 1.State Key Laboratory of MagnetismInstitute of PhysicsBeijingPeople’s Republic of China
  2. 2.Laboratory of Solid State Physics, Department of PhysicsTsingHua UniversityBeijingPeople’s Republic of China

Personalised recommendations