Journal of Materials Science

, Volume 31, Issue 3, pp 699–705 | Cite as

Perovskite phase formation and microstructural evolution of lead magnesium tungstate-lead titanate ceramics

  • Chung -Hsin Lu


The perovskite phase formation and microstructural evolution in the Pb(Mg0.5W0.5)O3-PbTiO3 system have been investigated in this work. During the solid-state reaction of Pb(Mg0.5W0.5)O3, only PbWO4 and Pb2WO5 are formed as intermediate phases at low temperature range. Moreover, the perovskite phase Pb(Mg0.5W0.5O3 begins to form at 600 °C and is complete at 850 °C. As Pb(Mg0.5W0.5)O3 is doped with PbTiO3, the formation of the perovskite phase becomes sluggish and the temperature for the complete reaction to take place increases up to 1000 °C. The doping of the Pb(Mg0.5W0.5)O3 with PbTiO3 apparently induces the formation of a small amount of liquid phase, which is possibly attributed to a reaction with residual Pb2WO5. This liquid phase not only accelerates the densification of specimens through a liquid phase sintering mechanism, but also causes abnormal grain growth, thereby forming an inhomogeneous microstructure. The dielectric permittivity of Pb(Mg0.5W0.5)O3 does not depend on frequency, and a sharp phase transformation from the antiferroelectric to the paraelectric state occurs at around 40 °C. In contrast, the dielectric properties and broad phase transformation temperatures of Pb(Mg0.5W0.5)0.9Ti0.1O3 and Pb(Mg0.5W0.5)0.6Ti0.4O3 strongly depend on frequency. This dependency would imply that the PbTiO3 addition to Pb(Mg0.5W0.5)O3 alters the order arrangement of B-site cations to a disordered state and induces relaxor-ferroelectric characteristics.


Phase Transformation Microstructural Evolution Dielectric Permittivity Transformation Temperature Perovskite Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. R. BUESSEM and T. I. PROKOPOWICZ, Ferroelectrics 10 (1976) 225.CrossRefGoogle Scholar
  2. 2.
    Y. SAKABE, Amer. Ceram. Soc. Bull. 66 (1987) 1338.Google Scholar
  3. 3.
    M. YONEZAWA, M. K. UTSUMI and S. SAITO, in “High Tech Ceramics” edited by P. VINCENZINI (Elsevier Science Publishers B.V., Amsterdam, 1987) p. 1493.Google Scholar
  4. 4.
    G. A. SMOLENSKII, A. I. AGRANOVSKAYA and V. A. ISUPOV, Sov. Phys. Tech. Phys. 1 (1959) 1981.Google Scholar
  5. 5.
    G. A. SMOLENSKII, N. N. KRAINIK and A. I. AGRANOVSKAYA, Sov. Phys. Solid State 3 (1961) 714.Google Scholar
  6. 6.
    S. NOMURA, S. J. JANG, L. E. CROSS and R. E. NEWNHAM, J. Amer. Ceram. Soc. 62 (1979) 485.CrossRefGoogle Scholar
  7. 7.
    S. NOMURA, J. KUWATA, K. UCHINO, S. J. JANG, L. E. CROSS and R. E. NEWNHAM, Phys. State Solid 57 (1980) 317.CrossRefGoogle Scholar
  8. 8.
    Ya. S. BOGDANOV, A. Ya. DANTSIGER, O. N. RAZUMOVSKAYA and E. G. FESENKO, Inorg. Mater. 17 (1981) 12.Google Scholar
  9. 9.
    M. H. LEE and W. K. CHOO, J. Appl. Phys. 52 (1981) 5767.CrossRefGoogle Scholar
  10. 10.
    T. KOBAYASHI, S. SUGIYAMA and K. UCHINO, Ferroelectrics Lett. 7 (1987) 75.CrossRefGoogle Scholar
  11. 11.
    R. J. BOUCHARD, L. H. BRIXNER and M. J. POPOWICH, US Patent 4228482 October (1980).Google Scholar
  12. 12.
    M. YONEZAWA, Ferroelectrics 68 (1986) 181.CrossRefGoogle Scholar
  13. 13.
    S. TAKAHASHI, A. OCHI, K. UTSUMI and M. SHIRAKATA, Jpn. J. Appl. Phys. 28 (1989) 35.CrossRefGoogle Scholar
  14. 14.
    L. L. Y. CHANG, J. Amer. Ceram. Soc. 54 (1971) 357.CrossRefGoogle Scholar
  15. 15.
    M. LEJUENE and J. P. BIOLOT, Ceram. Int. 8 (1982) 99.CrossRefGoogle Scholar
  16. 16.
    C. H. LU, K. SHINOZAKI, N. MIZUTANI and M. KATO, J. Jpn. Ceram. Soc. 97 (1989) 119.CrossRefGoogle Scholar
  17. 17.
    A. I. ZASLAVSKII and M. F. BRYZHINA, Sov. Phys. Cryst. 7 (1963) 577.Google Scholar
  18. 18.
    C. H. LU, J. Amer. Ceram. Soc. 73 (1994) 2529.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Chung -Hsin Lu
    • 1
  1. 1.Department of Chemical EngineeringNational Taiwan UniversityTaipeiTaiwan, Republic of China

Personalised recommendations