Journal of Materials Science

, Volume 31, Issue 3, pp 663–671 | Cite as

Isothermic growth of one spherulite around circular obstacles in a polypropylene foil

  • G. E. Werner Schulze
  • M. Biermann


Growth of one spherulite within a thin foil of polypropylene around one circular obstacle or around combinations of circular obstacles is investigated. For each obstacle there exists a region of shadow, seen from the nucleus of the spherulite, which influences the growth of the spherulite. Within any region of shadow the growth fronts are evolvents of the obstacle's boundary, because the spherulite grows isotropically. When two growth fronts belonging to one spherulite meet each other inside the shadow, an intrinsic grain boundary is formed for each obstacle. Additionally, growth of one spherulite around a rectangular obstacle and a spherical obstacle is investigated.


Polymer Polypropylene Material Processing Thin Foil Growth Front 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. VARGA, J. Mater. Sci. 27 (1992) 2557.CrossRefGoogle Scholar
  2. 2.
    G. E. W. SCHULZE and H.-P. WILBERT, J. Mater. Sci. Lett. 8 (1989) 71.CrossRefGoogle Scholar
  3. 3.
    H. D. KEITH and F. J. PADDEN, J. Appl. Phys. 35 (1964) 1270.CrossRefGoogle Scholar
  4. 4.
    Idem, ibid. 35 (1964) 1286.CrossRefGoogle Scholar
  5. 5.
    F. J. PADDEN and H. D. KEITH, ibid. 44 (1973) 1217.CrossRefGoogle Scholar
  6. 6.
    M. BIERMANN, PhD thesis, Heinrich-Heine-Universität Düsseldorf, (1994).Google Scholar
  7. 7.
    I. N. BRONSTEIN and K. A. SEMENDJAJEW, “Taschenbuch der Mathematik” (Verlag Harri Deutsch, Thun und Frankfurt am Main, 1984) pp. 594–95.Google Scholar
  8. 8.
    M. M. LIPSCHUTZ, “Theory and Problems of Differential Geometry” (McGraw Hill, New York, 1969) pp. 80–102.Google Scholar
  9. 9.
    G. E. W. SCHULZE and M. BIERMANN, J. Mater. Sci. Lett. 12 (1993) 11.Google Scholar
  10. 10.
    Idem, ibid. 12 (1993) 533.Google Scholar
  11. 11.
    G. E. W. SCHULZE and H.-P. WILBERT, Colloid & Polym. Sci. 267 (1989) 108.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • G. E. Werner Schulze
    • 1
  • M. Biermann
    • 1
  1. 1.Abteilung für Werkstoffwissenschaft, Institut für Physik der Kondensierten MaterieHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany

Personalised recommendations