Advertisement

Journal of Materials Science

, Volume 31, Issue 3, pp 655–662 | Cite as

A method of measuring energy dissipation during crack propagation in polymers with an instrumented ultramicrotome

  • M. L. Ericson
  • H. Lindberg
Papers

Abstract

In order to characterize very local energy dissipation during crack propagation in polymers, an ultramicrotome was instrumented to measure the energy dissipated during sectioning. The work to section per unit area, Ws, was measured for five different amorphous polymers [polymethyl methacrylate (PMMA), polystyerene (PS), polycarbonate (PC) and two epoxy resins] in the glassy state. When the section thickness was varied between 60 and 250 nm, Ws varied between 15 and 100 Jm−2, depending on the material and section thickness. The method and the results are compared with other methods used for determining the energy dissipation at a local level as well as at a macroscopic level in polymers. The differences between different polymers were found to be contradictory to macroscopic fracture toughness, Glc, measurements. The material that showed the highest Ws had the lowest Glc values reported. Possible mechanisms for energy dissipation during sectioning are also discussed.

Keywords

Polymer Epoxy Fracture Toughness PMMA Methacrylate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. J. KINLOCH and R. J. YOUNG, “Fracture Behaviour of Polymers” (Elsevier, London, 1988) p. 74.Google Scholar
  2. 2.
    N. E. KING and E. H. ANDREWS, J. Mater. Sci. 13 (1978) 1291.CrossRefGoogle Scholar
  3. 3.
    L. H. SPERLING, “Introduction to Physical Polymer Science”, 2nd Edn (Wiley, Toronto, 1992) p. 544.Google Scholar
  4. 4.
    J. BRANDRUP and E. H. IMMERGUT, “Polymer Handbook”, 3rd Edn (Wiley, New York, 1989) pp. V78, V83, VI414–432.Google Scholar
  5. 5.
    H. H. KAUSCH, “Polymer Fracture” (Springer-Verlag, Berlin, 1987) p. 273.Google Scholar
  6. 6.
    D. C. PHILLIPS, J. M. SCOTT and M. JONES, J. Mater. Sci. 13 (1978) 311.CrossRefGoogle Scholar
  7. 7.
    G. B. MCKENNA, J. M. CRISSMAN and A. LEE, Polym. Prepr. 29 (1988) 128.Google Scholar
  8. 8.
    H. F. MARK, N. M. BIKALES, C. G. OVERBERGER and G. MENGES (Eds), “Encylopedia of Polymer Science and Engineering” (Wiley, New York, 1987) p. 7.372.Google Scholar
  9. 9.
    L. ASP, L. A. BERGLUND and P. GUDMUNDSON, Compos. Sci. Technol. submitted.Google Scholar
  10. 10.
    R. J. MORGAN, F.-M. KONG and C. M. WALKUP, Polymer 25 (1984) 375.CrossRefGoogle Scholar
  11. 11.
    G. J. LAKE and P. B. LINDLEY, J. Appl. Polym. Sci. 9 (1965) 1233.CrossRefGoogle Scholar
  12. 12.
    R. J. MORGAN and J. E. O'NEAL, Polym.-Plast. Technol. Eng. 10 (1978) 49.CrossRefGoogle Scholar
  13. 13.
    R. P. WOOL and A. T. ROCKHILL, J. Macromol. Sci.-Phys. B20 (1981) 85.CrossRefGoogle Scholar
  14. 14.
    K. A. MAZICH, M. A. SAMUS, C. A. SMITH and G. ROSSI, Macromol. 24 (1991) 2766.CrossRefGoogle Scholar
  15. 15.
    A. G. ATKINS and J. F. V. VINCENT, J. Mater. Sci. Lett. 3 (1984) 310.CrossRefGoogle Scholar
  16. 16.
    N. MOHAMMADI, R. BAGHERI, G. A. MILLER, A. KLEIN and L. H. SPERLNG, Polym. Testing 12 (1993) 65.CrossRefGoogle Scholar
  17. 17.
    P. FORDYCE, B. M. FANCONI and K. L. DEVRIES, Polym. Eng. Sci. 24 (1984) 421.CrossRefGoogle Scholar
  18. 18.
    A. C.-M. YANG, C. K. LEE and S. L. FERLINE, J. Polym. Sci. Polym. Phys. Ed. 30 (1992) 1123.CrossRefGoogle Scholar
  19. 19.
    G. J. LAKE and A. G. THOMAS, Proc. R. Soc. Lond. A300 (1967) 108.Google Scholar
  20. 20.
    J. F. V. VINCENT, Europ. Microsc. Anal. May (1991) 13.Google Scholar
  21. 21.
    R. T. ALLISON and J. F. V. VINCENT, J. Microsc. 159 (1990) 203.CrossRefGoogle Scholar
  22. 22.
    B. J. DOBRASZCZYK, A. G. ATKINS, G. JERONIMIDIS and P. P. PURSLOW, Meat Sci. 21 (1987) 25.CrossRefGoogle Scholar
  23. 23.
    S. HODSON and J. MARSHALL, J. Microsc. 95 (1972) 459.CrossRefGoogle Scholar
  24. 24.
    A. J. SAUBERMANN, W. D. RILEY and R. BEEUWKES III, ibid. 111 (1977) 39.CrossRefGoogle Scholar
  25. 25.
    P. WIKEFELDT, PhD thesis, Chalmers Institute of Technology (1973) in Swedish.Google Scholar
  26. 26.
    H. F. HELANDER, J. Microsc. 101 (1974) 81.CrossRefGoogle Scholar
  27. 27.
    J. L. WILLETT, K. M. O'CONNER and R. P. WOOOL, J. Polym. Sci., Polym. Phys. Ed. 24 (1986) 2583.CrossRefGoogle Scholar
  28. 28.
    W. J. PATZELT, “Polarisationsmikroskopie”, Grundlagen, Instrumente, Anwendungen. Ernst Leitz GMBH (1974).Google Scholar
  29. 29.
    K. A. H. LINDBERG, PhD thesis 1987, Luleå University of Technology (1987).Google Scholar
  30. 30.
    R. M. D. MESQUITA and M. J. M. BARATA MARQUES, J. Mater. Process. Technol. 33 (1992) 229.CrossRefGoogle Scholar
  31. 31.
    O. DOI and M. YOKOYAMA, Bull. JSME 18 (1975) 905.CrossRefGoogle Scholar
  32. 32.
    Idem. ibid. 21 (1978) 161.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • M. L. Ericson
    • 1
  • H. Lindberg
    • 1
    • 2
  1. 1.Division of Polymer EngineeringLuleå University of TechnologyLuleåSweden
  2. 2.Department of Wood Technology, SKERIA 3Luleå University of TechnologySkellefteåSweden

Personalised recommendations