Advertisement

Journal of Materials Science

, Volume 31, Issue 3, pp 559–563 | Cite as

Expanded ceramic foam

  • E. J. A. E. Williams
  • J. R. G. Evans
Papers

Abstract

A method for manufacturing low-density ceramic foam by applying the procedures used for expanded polystyrene is described. Alumina powder was incorporated into polystyrene at 50 vol% by high shear mixing and the palletized product was immersed in pentane. Low-density foam mouldings were then produced by single-stage steam treatment. These mouldings retained their shape during pyrolysis of the polystyrene. The foams were then sintered to give a porous ceramic with a void content of about 84%. This process offers an inexpensive route for the manufacture of moulded porous ceramics, for example in refractory applications, and is expected to be able to serve a wide range of high-performance ceramic powders.

Keywords

Polymer Foam Steam Pyrolysis Polystyrene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. SAGGIO-WOYANSKY, C. E. SCOTT and W. P. MINNEAR, Bull. Am. Ceram. Soc. 71 (1992) 1674.Google Scholar
  2. 2.
    K. SCHWARTZWALDER, and A. V. SOMERS, Articles US Pat. 3090094, 21 May 1963.Google Scholar
  3. 3.
    W. P. MINNEAR, in “Ceramic Transactions 26, Forming Science and Technology for Ceramics,” edited by M.J. CIMA (American Ceramic Society, Westerville, OH, 1992) pp. 149–56.Google Scholar
  4. 4.
    S. J. POWEEL and J. R. G. EVANS, Mater. Manuf. Proc., 10 (1995) 757.CrossRefGoogle Scholar
  5. 5.
    A. R. INGRAM and J. FOGEL, in “Plastic Foams”, Pt II, edited by K. C. FRISCH and J. H. SAUNDERS (Marcel Dekker, New York, 1973) pp. 525–638.Google Scholar
  6. 6.
    P. HAMMOND and J. R. G. EVANS, J. Mater. Sci. Lett. 10 (1991) 294.CrossRefGoogle Scholar
  7. 7.
    K. M. HAUNTON, J. K. WRIGHT and J. R. G. EVANS, Br. Ceram. Trans. J. 89 (1990) 53.Google Scholar
  8. 8.
    J. GREENER and J. R. G. EVANS, J. Mater. Sci. 28 (1993) 6190.CrossRefGoogle Scholar
  9. 9.
    T. H. FERRINGO, “Rigid Plastic Foams” (Reinhold, New York, 1963) pp. 139–211.Google Scholar
  10. 10.
    C. J. BENNING, “Plastic Foams”, Vol. 1 (Wiley, New York, 1969) pp. 1–115.Google Scholar
  11. 11.
    K. W. SUH, in “Handbook of Polymeric Foams and Foam Technology,” edited by D. KLEMPNER and K. C. FRISCH (Hanser, Munich, 1991) pp. 151–86.Google Scholar
  12. 12.
    A. R. INGRAM, R. R. COBBS and L. C. COUCHOT, in “Resinography of Cellular Plastics,” ASTM STP 414 (American Society for Testing and Materials, Philadelphia, PA, 1967) pp. 53–67.Google Scholar
  13. 13.
    J. K. WRIGHT, M. J. EDIRISINGHE, J. G. ZHANG and J. R. G. EVANS, J. Am. Ceram. Soc. 73 (1991) 2653.CrossRefGoogle Scholar
  14. 14.
    Z. PRIEL and A. SILBERBERG, J. Polym. Sci. Polym. Phys. 16 (1971) 1917.CrossRefGoogle Scholar
  15. 15.
    J. N. ISRAELACHVILI, “Intermolecular and Surface Forces”, 2nd Edn (Academic Press, London, 1991) p. 298.Google Scholar
  16. 16.
    F. Th. HESSELINK, J. Phys. Chem. 75 (1971) 65.CrossRefGoogle Scholar
  17. 17.
    Idem, ibid. 75 (1971) 2094.CrossRefGoogle Scholar
  18. 18.
    J. H. SONG and J. R. G. EVANS, J. Mater. Res. 9 (1994) 2386.CrossRefGoogle Scholar
  19. 19.
    P. G. COLLISHAW and J. R. G. EVANS, J. Mater. Sci. 29 (1994) 2261.CrossRefGoogle Scholar
  20. 20.
    W. J. BATTY, S. D. PROBERT and P. W. O'CALLAGHAN, Appl. Energy 18 (1984) 117.CrossRefGoogle Scholar
  21. 21.
    W. H. GITZEN, “Alumina as a Ceramic Material” (American Ceramic Society, Columbus, OH, 1970) pp. 89–97.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • E. J. A. E. Williams
    • 1
  • J. R. G. Evans
    • 1
  1. 1.Department of Materials TechnologyBrunel UniversityUxbridgeUK

Personalised recommendations