Journal of Materials Science

, Volume 29, Issue 22, pp 6047–6054 | Cite as

High-temperature deformation behaviour of YBa2Cu3O7−x

  • W. -J. Kang
  • S. Hanada
  • Y. Wadayama
  • A. Nagata


High-temperature compression tests were performed in air for YBa2Cu3O7−x polycrystals with grain sizes of 3 and 7 Μm at various strain rates between 1.3×10−5 and 4×10−4s−1 and at temperatures between 1136 and 1253 K. Steady state deformation appeared above 1203 K for both samples. A stress exponent of 1.3 and an activation energy of 150 kJ mol−1 were evaluated. The compression tests and microstructural observations revealed that there was a difference in deformation mechanism above and below 1203 K. The dominant mechanism was diffusional creep associated with grain-boundary sliding above 1203 K, and dislocation glide accompanied with grain-boundary sliding below 1203 K. The growth of anisotropic grains and their preferred arrangement were enhanced by deformation.


Polymer Grain Size Steady State Activation Energy Compression Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. N. Song, Q. Robinson, D. L. Johnson and J. B. Ketterson, Solid State Commun. 68 (1988) 391.CrossRefGoogle Scholar
  2. 2.
    J. Rabier and M. F. Denanot, Rev. Phys. Appl. 25 (1990) 55.CrossRefGoogle Scholar
  3. 3.
    J. Rabier, in “Proceedings of the Japan-France Seminar on Lattice Defects in Ceramics”, Tokyo, July 1989, JJAP series 2, p. 33.Google Scholar
  4. 4.
    T. Hatanaka and A. Sawada, Jpn J. Appl. Phys. 28 (1989) L392.CrossRefGoogle Scholar
  5. 5.
    T. Hatanaka and A. Sawada, Jpn J. Appl. Phys. 28 (1989) L794.CrossRefGoogle Scholar
  6. 6.
    N. Narita, H. Higashida and S. Mishina, in “Proceedings of the 2nd International Symposium on Superconductors”, Tsukuba 14–17, November (1989).Google Scholar
  7. 7.
    T. Suzuki and S. Takeuchi, Oyo Buturi 58 (1989) 1743.Google Scholar
  8. 8.
    Idem, in “Proceedings of the Japan-France Seminar on Lattice Defects in Ceramics”, Tokyo, July 1989, JJAP series 2, p. 9.Google Scholar
  9. 9.
    H. Saka and K. Kuroda, Bull. Jpn. Inst. Metals 29 (1990) 693.CrossRefGoogle Scholar
  10. 10.
    H. Saka, J. Inagaki, T. Yoshida, T. Murase and K. Kuroda, in “Proceedings of the Japan-France Seminar on Lattice Defects in Ceramics”, Tokyo, July 1989, JJAP series 2, p. 143.Google Scholar
  11. 11.
    P. E. Reyes-Morel, X. Wu and I. W. Chen, in “Ceramic Superconduntors II”, edited by M. F. Yan (American Ceramic Society Westerville, OH, 1988) pp. 590–7.Google Scholar
  12. 12.
    G. Bussod, A. Pechenik, C. T. Chu and B. Dumn, J. Am. Ceram. Soc. 72 (1989) 137.CrossRefGoogle Scholar
  13. 13.
    A. W. Von Stumberg, N. Chen, K. C. Goretta and J. L. Routbort, J. Appl. Phys. 66 (1989) 2079.CrossRefGoogle Scholar
  14. 14.
    K. C. Goretta, J. L. Roubort, A. C. Biondo, Y. Gao, A. R. de Arellano-Lopez and A. Dominguez-Rodriguez, J. Mater. Res. 5 (1990) 2766.CrossRefGoogle Scholar
  15. 15.
    W. J. Kang, K. Yoshimi, S. Hanada, S. Saito, Y. Murayama, S. Hayashi and A. Nagata, J. Appl. Phys. 68 (1990) 6341.CrossRefGoogle Scholar
  16. 16.
    T. M. Shaw, S. L. Shinde, D. Dimos, R. F. Cook, P. R. Duncombe and C. Kroll, J. Mater. Res. 4 (1989) 248.CrossRefGoogle Scholar
  17. 17.
    W. J. Kang, S. Hanada, A. Nagata, and Y. Wadayama, Mater. Sci. Eng. B, in press.Google Scholar
  18. 18.
    “Metals Handbook”, Vol. 8, 8th Edn (American Society for Metals) p. 42.Google Scholar
  19. 19.
    J. L. Routbort, Acta Metall. 27 (1979) 649.CrossRefGoogle Scholar
  20. 20.
    T. Yoshida, K. Kuroda and H. Saka, Philos. Mag. A 62 (1990) 573.CrossRefGoogle Scholar
  21. 21.
    O. A. Kaibyshev, R. M. Imaev and M. F. Imaev, Sov. Phys. Dokl. 34 (1989) 375.Google Scholar
  22. 22.
    R. Von Mises, Z. Angew. Math. Mech. 8 (1928).Google Scholar
  23. 23.
    T. B. Lindermer, J. F. Hunley, J. E. Gates, A. L. Sutton Jŕ, J. Brynestad and C. R. Hubbard, J. Am. Soc. 72 (1989) 1775.Google Scholar
  24. 24.
    K. Kishio, J. Shimoyama, T. Hasegawa, K. Kitazawa, and K. Fueki, J. Jpn Appl. Phys. 26 (1987) L1228.CrossRefGoogle Scholar
  25. 25.
    E. D. Specht, C. T. Sparks, A. G. Dhere, J. Brynostad, O. B. Cabin, and D. M. Kroeger, Phys. Rev. B 37 (1988) 7426.CrossRefGoogle Scholar
  26. 26.
    C. Namgung, J. T. S. Irvine, J. H. Binks and A. R. West, Supercond. Sci. Technol. (1988) 169.Google Scholar
  27. 27.
    J. D. Jorgensen, M. A. Beno, D. G. Hinks, L. Soderholm, K. J. Volin, R. L. Hitterman, J. D. Grace and Iva K. Schuller, Phys. Rev. B 36 (1987) 3608.CrossRefGoogle Scholar
  28. 28.
    J. D. Jorgensen, B. W. Veal, W. K. Kwok, G. W. Crabtree, A. Umezawa, L. J. Nowicki and A. P. Paulikas, 36 (1987) 5731.CrossRefGoogle Scholar
  29. 29.
    J. D. Jorgensen, H. Shaked, D. G. Hinks, B. Dabrowski, B. W. Veal, A. P. Paulikas, L. J. Nowicki, G. W. Grabtree, W. K. Kwok and L. H. Nunez, Physica C (1988) 578.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • W. -J. Kang
    • 1
  • S. Hanada
    • 2
  • Y. Wadayama
    • 3
  • A. Nagata
    • 4
  1. 1.Department of Materials ProcessingTohoku UniversitySendaiJapan
  2. 2.Institute for Materials ResearchTohoku UniversitySendaiJapan
  3. 3.Hitachi Research LaboratoryHitachi, LtdIbarakikenJapan
  4. 4.Department of Metallic Materials for EngineeringMining College, Akita UniversityAkitaJapan

Personalised recommendations