Advertisement

Journal of Materials Science

, Volume 29, Issue 22, pp 6041–6046 | Cite as

Fracture mechanisms of poly(methyl methacrylate) under static torsion in alcohol environments

  • M. Kawagoe
  • M. Morita
Article

Abstract

Static torsion tests of poly(methyl methacrylate) were conducted in several alcohol environments at room temperature. The critical torsional stress for crazing and/or cracking increased with increasing molar volume of alcohol, and was not correlated with the solubility parameter, nor with equilibrium solubility as reported in previous results on n-alkanes. Crazing stresses in alcohols were generally lower than those in alkanes. According to Fourier transform-infrared microscopy of the surface scratch made in several environments, both in ethanol and in 1 -butanol, some absorptions were detected at 3450–3650 cm−1, probably due to the hydroxyl group of these alcohols caught by hydrogen bonding to oxygen of the carbonyl group in the side chain, whereas in other environments (1 -octanol, n-hexane, and air) there were no absorptions in this region of wave number. These results suggest that at a flaw tip strained under stress, penetrating alcohol molecules are chemically adsorbed in a cluster, which breaks a weak bond (e.g. dipole interaction) between the polymer chains and, as a result, facilitates craze formation and breakdown leading to brittle fracture.

Keywords

Carbonyl Alkane Butanol Molar Volume Brittle Fracture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. P. Kambour, J. Polym. Sci. Macromol. Rev. 7 (1973) 1.CrossRefGoogle Scholar
  2. 2.
    E. J. Kramer, in “Developments in Polymer Fracture”, edited by E. H. Andrews (Applied Science, London, 1979) p. 55.Google Scholar
  3. 3.
    R. P. Kambour, E. E. Romagosa and C. L. Gruner, Macromolecules 5 (1972) 335.CrossRefGoogle Scholar
  4. 4.
    R. P. Kambour, C. L. Gruner and E. E. Romagosa, J. Polym. Sci. Polym. Phys. Ed. 11 (1973) 1879.CrossRefGoogle Scholar
  5. 5.
    P. I. Vincent and S. Raha, Polymer 13 (1972) 283.CrossRefGoogle Scholar
  6. 6.
    C. H. M. Jacques and M. G. Wyzgoski, J. Appl. Polym. Sci. 23 (1979) 1153.CrossRefGoogle Scholar
  7. 7.
    Y. W. Mai, J. Mater. Sci. 21 (1986) 904.CrossRefGoogle Scholar
  8. 8.
    M. Kawagoe and M. Kitagawa, 22 (1987) 3000.CrossRefGoogle Scholar
  9. 9.
    P. J. Flory, J. Chem. Phys. 9 (1941) 660.CrossRefGoogle Scholar
  10. 10.
    M. Kawagoe and M. Kitagawa, J. Mater. Sci. 25 (1990) 1043.CrossRefGoogle Scholar
  11. 11.
    M. Kawagoe and M. Morita,, 28 (1993) 2347.CrossRefGoogle Scholar
  12. 12.
    P. Dunn and G. F. Sansom, J. Appl. Polym. Sci. 13 (1969) 1657.CrossRefGoogle Scholar
  13. 13.
    R. P. Burford and D. R. G. Williams, J. Mater. Sci. 14 (1979) 2881.CrossRefGoogle Scholar
  14. 14.
    M. G. Wyzgoski and G. E. Novak, 22 (1987) 1715.CrossRefGoogle Scholar
  15. 15.
    T. A. Michalske and S. W. Freiman, Nature 295 (1982) 511.CrossRefGoogle Scholar
  16. 16.
    T. A. Michalske and S. W. Freiman, J. Appl. Phys. 56 (1984) 2986.CrossRefGoogle Scholar
  17. 17.
    T. Asahara, N. Tokura, M. Ookawara, J. Kumanotani and S. Senoo (eds.), in “Yozai Handbook” (Kodansha, Tokyo, 1976) (in Japanese).Google Scholar
  18. 18.
    A. F. M. Barton, Chem. Rev. 75 (1975) 731.CrossRefGoogle Scholar
  19. 19.
    E. G. Shafrin, in “Polymer Handbook”, edited by J. Brandrup and H. Immergut (Interscience, New York, 1966) III, p. 221.Google Scholar
  20. 20.
    K. Hirao and M. Tomozawa, J. Amer. Ceram. Soc. 70 (1987) 497.CrossRefGoogle Scholar
  21. 21.
    N. L. Thomas and A. H. Windle, Polymer 22 (1981) 627.CrossRefGoogle Scholar
  22. 22.
    M. Kawagoe and S. Nunomoto, 32 (1991) 3130.CrossRefGoogle Scholar
  23. 23.
    E. H. Andrews, G. M. Levy and J. Willis, J. Mater. Sci. 8 (1973) 1000.CrossRefGoogle Scholar
  24. 24.
    N. K. Kai (ed.), “Kagaku Binran” (Maruzen, Tokyo, 1975) p. 1320 (in Japanese).Google Scholar
  25. 25.
    K. Mizutani, Y. Tanaka, M. Ido and M. Tanisaki, J. Soc. Mater. Sci. Jpn 32 (1983) 1102 (in Japanese).CrossRefGoogle Scholar
  26. 26.
    M. Kawagoe and M. Kitagawa, J. Mater. Sci. 23 (1988) 3927.CrossRefGoogle Scholar
  27. 27.
    J. Shen, C. C. Chen and J. A. Sauer, Polymer 26 (1985) 511.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • M. Kawagoe
    • 1
  • M. Morita
    • 1
  1. 1.Department of Mechanical Systems Engineering, Faculty of EngineeringToyama Prefectural UniversityToyamaJapan

Personalised recommendations