Advertisement

Journal of Materials Science

, Volume 29, Issue 22, pp 6026–6032 | Cite as

Double torsion fracture testing of high-density polyethylene

  • B. J. Egan
  • O. Delatycki
Article

Abstract

The fracture of polyethylene has been studied extensively using conventional testing geometries such as three-point bending (TPB) and single-edge notch tension (SENT). These geometries are of limited utility for studying crack growth, because the crack speed is constantly changing and the crack front is in the centre of the specimen. Double torsion (DT) is a fracture geometry that suffers neither of these disadvantages, yet has only received limited attention in the literature. Its use has been limited to highly brittle materials such as glass, ceramics, thermosetting plastics and PMMA. In contrast to these materials, high-density polyethylene (HDPE) is an inherently ductile polymer. Before the advantages of DT can be exploited for testing HDPE, it is first necessary to demonstrate the validity of DT fracture measurements performed on such a ductile material. In this paper it is shown that at moderate rates of loading and at temperatures below 0‡C, valid double torsion fracture results can be obtained for an ethylene 1-butene copolymer. A novel technique for specimen preparation and a simple method for accurately monitoring crack growth are also described.

Keywords

PMMA HDPE Crack Front Fracture Geometry Ductile Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. K. V. Chan and J. G. Williams, Int. J. Fract. 22 (1983) 145.CrossRefGoogle Scholar
  2. 2.
    M. K. V. Chan and J. G. Williams, Polymer 24 (1983) 234.CrossRefGoogle Scholar
  3. 3.
    X. Lu, X. Wang and N. Brown, J. Mater. Sci. 23 (1988) 643.CrossRefGoogle Scholar
  4. 4.
    D. Barry and O. Delatycki, J. Polym. Sci. B Polym. Phys. Ed. 25 (1987) 883.CrossRefGoogle Scholar
  5. 5.
    I. Narisawa, Polym. Eng. Sci. 27 (1987) 41.CrossRefGoogle Scholar
  6. 6.
    X. Lu and N. Brown, Polymer 28 (1987) 1505.CrossRefGoogle Scholar
  7. 7.
    D. B. Barry and O. Delatycki, J. Appl. Polym. Sci. 38 (1989) 339.CrossRefGoogle Scholar
  8. 8.
    N. Brown and S. K. Bhattacharya, J. Mater. Sci. 20 (1985) 4553.CrossRefGoogle Scholar
  9. 9.
    S. H. Carr, B. Crist and T. J. Marks, Gov. Rep. Announce. Index 85 (1985) 96.Google Scholar
  10. 10.
    K. Tonyali, C. Rogers and H. R. Brown, J. Macromol. Sci. Phys. B28 (1989) 235.CrossRefGoogle Scholar
  11. 11.
    N. Brown, J. Donofrio and X. Lu, Polymer 28 (1987) 1326.CrossRefGoogle Scholar
  12. 12.
    M. Flei\ner, Kunststoffe 77 (1987) 1.Google Scholar
  13. 13.
    D. J. Gerry, PhD thesis, University of Vermont (1966).Google Scholar
  14. 14.
    J. A. Kies and B. J. Clark, in “Proceedings of the 2nd International Conference on Fracture”, Brighton, April 1969, edited by P. L. Pratt (Chapman and Hall, London, 1969) p. 483.Google Scholar
  15. 15.
    J.-C. Pollet and S. J. Burns, “Evaluation for ASTM E-24.07.02” (American Society for Testing and Materials, Philadelphia, PA, 1979).Google Scholar
  16. 16.
    F. P. Champomier, in “Fracture Mechanics Applied to Brittle Materials”, ASTM STP 678, edited by S. W. Freiman (American Society for Testing and Materials, Philadelphia, PA, 1979) p. 60.CrossRefGoogle Scholar
  17. 17.
    T. A. Michalske, M. Singh and V. D. Frechette, in “Fracture Mechanics Methods for Ceramics, Rocks, and Concrete”, ASTM STP 745, edited by S. W. Freiman and E. R. Fuller (American Society for Testing and Materials, Philadelphia, PA, 1981) p. 3.CrossRefGoogle Scholar
  18. 18.
    J. O. Outwater, M. C. Murphy, R. G. Kumble and J. T. Berry, in “Fracture Toughness and Slow-Stable Cracking”, ASTM STP 559 (Americal Society for Testing and Materials, Philadelphia, PA, 1974) p. 127.CrossRefGoogle Scholar
  19. 19.
    A. G. Evans, M. Linzer and L. R. Russell, Mater. Sci. Eng. 15 (1974) 253.CrossRefGoogle Scholar
  20. 20.
    D. P. Williams and A. G. Evans, J. Test. Eval. 1 (1973) 264.CrossRefGoogle Scholar
  21. 21.
    A. G. Evans, J. Mater. Sci. 7 (1972) 1137.CrossRefGoogle Scholar
  22. 22.
    M. Matsui, T. Soma and I. Oda, in “Fracture Mechanics of Ceramics”, Vol. 4, edited by D. Bradt, P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1978) p. 711.Google Scholar
  23. 23.
    J. G. Bruce, W. W. Gerberich and B. G. Koepke,, p. 687.Google Scholar
  24. 24.
    C. G. Annis and J. S. Cargill,, p. 737.Google Scholar
  25. 25.
    T. Fett, K. Keller and D. Munz, Int. J. Fract. 36 (1988) 3.Google Scholar
  26. 26.
    R. J. Young and P. W. R. Beaumont, J. Mater. Sci. 10 (1975) 1343.CrossRefGoogle Scholar
  27. 27.
    P. S. Leevers, 17 (1982) 2469.CrossRefGoogle Scholar
  28. 28.
    W.J. Cantwell, A. C. Roulin-Moloney and H. H. Kausch, J. Mater. Sci. Lett. 7 (1988) 976.CrossRefGoogle Scholar
  29. 29.
    R. J. Young and P. W. R. Beaumont, J. Mater. Sci. 12 (1977) 684.CrossRefGoogle Scholar
  30. 30.
    B. Stalder and H. H. Kausch, 17 (1982) 2481.CrossRefGoogle Scholar
  31. 31.
    G. P. Marshall, L. H. Coutts and J. G. Williams, 9 (1974) 1409.CrossRefGoogle Scholar
  32. 32.
    R. Frassine, T. Riccò, M. Rink and A. Pavan, 23 (1988) 4027.CrossRefGoogle Scholar
  33. 33.
    P. W. R. Beaumont and R. J. Young, 10 (1975) 1334.CrossRefGoogle Scholar
  34. 34.
    B. J. Pletka, E. R. Fuller and B. G. Koepke, in “Fracture Mechanics Applied to Brittle Materials”, ASTM STP 678, edited by S. W. Freiman (American Society for Testing and Materials, Philadelphia, PA, 1979) p. 19.CrossRefGoogle Scholar
  35. 35.
    P. J. Hine, R. A. Duckett and I. M. Ward, J. Mater. Sci. 19 (1984) 3796.CrossRefGoogle Scholar
  36. 36.
    P. S. Leevers and J. G. Williams, 22 (1987) 1097.CrossRefGoogle Scholar
  37. 37.
    B. J. Pletka and S. M. Wiederhorn, in “Fracture Mechanics of Ceramics” edited by R. G. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1977) p. 745.Google Scholar
  38. 38.
    F. E. Bailey and R. Walter, Polym. Eng. Sci. 15 (1975) 842.CrossRefGoogle Scholar
  39. 39.
    Y. Chaoting, N. H. Ladizesky and I. M. Ward, J. Macromol. Sci. Phys. B27 (1988) 41.CrossRefGoogle Scholar
  40. 40.
    P. S. Leevers, J. Mater. Sci. Lett. 5 (1986) 191.CrossRefGoogle Scholar
  41. 41.
    S. R. Anthony, J. P. Chubb and J. Congleton, Philos. Mag. 22 (1970) 1201.CrossRefGoogle Scholar
  42. 42.
    A. M. Serrano, G. E. Welsch and R. Gibala, Polym. Eng. Sci. 22 (1982) 934.CrossRefGoogle Scholar
  43. 43.
    G. G. Trantina, J. Am. Ceram. Soc. 60 (1977) 388.Google Scholar
  44. 44.
    S. Hashemi and J. G. Williams, Polym. Eng. Sci. 26 (1986) 760.CrossRefGoogle Scholar
  45. 45.
    J. G. Williams, “Fracture Mechanics of Polymers” (Ellis Horwood, Chichester, 1984).Google Scholar
  46. 46.
    ASTM E813-81, “Standard Test Method for JIc, A Measure of Fracture Toughness” (American Society for Testing and Materials, Philadelphia, PA).Google Scholar
  47. 47.
    ASTM E399-83, “Standard Test Method for Plane Strain Fracture Toughness of Metallic Materials”, (American Society for Testing and Materials, Philadelphia, PA).Google Scholar
  48. 48.
    J. E. Srawley, M. H. Jones and W. F. Brown, Mater. Res. Stand. 7 (1967) 262.Google Scholar
  49. 49.
    M. K. V. Chan and J. G. Williams, Polym. Eng. Sci. 21 (1981) 1019.CrossRefGoogle Scholar
  50. 50.
    T. Riccò, R. Frassine and A. Pavan, J. Mater. Sci. 25 (1990) 1517.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • B. J. Egan
    • 1
  • O. Delatycki
    • 1
  1. 1.Department of Industrial ScienceUniversity of MelbourneParkvilleAustralia

Personalised recommendations