Advertisement

Journal of Materials Science

, Volume 29, Issue 22, pp 6011–6018 | Cite as

Experimental verification of quantum structural diagrams: formation by ion-beam mixing of new quasicrystals Ga85Mn15 and Al73Ni16Ta11

  • J. Tartas
  • E. J. Knystautas
Article

Abstract

New quasicrystalline phases in Ga85Mn15 and Al73Ni16Ta11 alloys have been formed by ion-beam mixing under specific irradiation conditions. These alloys are two of several predictions established on a systematic approach developed using the quantum structural diagrams technique. Microstructural analysis on a micrometre scale was performed under a transmission electron microscope using the selected area diffraction technique. Detailed information is presented on the different solid phases formed as a function of the implantation temperature and of the dose. The diffraction patterns obtained were analysed by elimination of all known or probable crystalline structures, and indexed using a standard indexing scheme for quasicrystals. These patterns are very different from those typical of Al-based quasicrystals, both in intensities and in interplanar spacings, although comparable values were found for d0, the quasicrystalline lattice constant.

Keywords

Transmission Electron Microscope Lattice Constant Crystalline Structure Systematic Approach Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Shechtman, I. Blech, D. Gratias and J. W. Cahn, Phys. Rev. Lett. 53 (1984) 1951.CrossRefGoogle Scholar
  2. 2.
    S. J. Poon, A. J. Drehman and K. R. Lawless, 55 (1985) 2324.CrossRefGoogle Scholar
  3. 3.
    J. Tartas and E. J. Knystautas, J. Mater. Res. 6 (1991) 1219.CrossRefGoogle Scholar
  4. 4.
    J. A. Alonso and N. H. March, “Electrons in Metals and Alloys” (Academic Press, London, 1989).Google Scholar
  5. 5.
    K. M. Rabe, A. R. Kortan, J. C. Phillips and P. Villars, Phys. Rev. B 43 (1991) 6280.CrossRefGoogle Scholar
  6. 6.
    W. Ohashi and F. Spaepen, Nature 330 (1987) 555.CrossRefGoogle Scholar
  7. 7.
    K. Yu-Zhang, PhD thesis, Université Paris VI, 1988.Google Scholar
  8. 8.
    P. A. Bancel and P. A. Heiney, J. Phys. Colloq. 47 (1986) C3–341.CrossRefGoogle Scholar
  9. 9.
    J. F. Ziegler, J. P. Biersack and U. Littmark, “TRIM-89: Transport of ions in matter,” Version 5.3 (IBM Research, Yorktown Heights, New York, 1989).Google Scholar
  10. 10.
    U. Littmark and J. F. Ziegler, “Handbook of range distributions for energetic ions in all elements” (Pergamon, New York, 1980).Google Scholar
  11. 11.
    A. F. Burenkov, F. F. Komarov, M. A. Kumakhov and M. M. Temkin, “Tables of ion implantation spatial distributions” (Gordon & Breach, New York, 1986).Google Scholar
  12. 12.
    D. A. Lilienfeld, in “Fundamentals of beam-solid interactions and transient thermal processing,” edited by M. J. Aziz, L. E. Rehn and B. Stritzker (Materials Research Society Symposium Proceedings 100, Pittsburgh, 1989) p. 45.Google Scholar
  13. 13.
    C. H. Shang, J. Li, H. D. Li and B. X. Liu, J. Phys. F 18 (1988) L169.CrossRefGoogle Scholar
  14. 14.
    D. M. Follstaedt and J. A. Knapp, Mater. Sci. Engng. 99 (1988) 367.CrossRefGoogle Scholar
  15. 15.
    J. A. Knapp and D. M. Follstaedt, in “Fundamentals of beam-solid interactions and transient thermal processing,” edited by M. J. Aziz, L. E. Rehn and B. Stritzen (Materials Research Society Symposium Proceedings 100, Pittsburgh, Pennsylvania, 1989) p. 45.Google Scholar
  16. 16.
    K. Hohmuth, V. Heera and B. Rauschenbach, Nucl. Instr. Meth. Phys. Res. B39 (1989) 136.CrossRefGoogle Scholar
  17. 17.
    B. Rauschenbach and V. Heera, J. Mater. Sci. Lett. 6 (1987) 401.CrossRefGoogle Scholar
  18. 18.
    L. M. Gratton, A. Miotello, C. Tosello, D. C. Kothari, G. Principi and A. Tomasi, Nucl. Instr. Meth. Phys. Res. B59/60 (1991) 541.CrossRefGoogle Scholar
  19. 19.
    D. M. Follstaedt and J. A. Knapp, Mater. Sci. Engng. 90 (1987) 1.CrossRefGoogle Scholar
  20. 20.
    D. M. Follstaedt and J. A. Knapp, J. Appl. Phys. 59 (1987) 1756.CrossRefGoogle Scholar
  21. 21.
    J. A. Knapp and D. M. Follstaedt, Phys. Rev. Lett. 55 (1987) 1591.CrossRefGoogle Scholar
  22. 22.
    D. A. Lilienfeld, M. Nastasi, H. H. Johnson, D. G. Ast and J. W. Mayer, 55 (1987) 1587.CrossRefGoogle Scholar
  23. 23.
    J. D. Budai and M. J. Aziz, Phys. Rev. B 33 (1987) 2876.CrossRefGoogle Scholar
  24. 24.
    L. J. Huang, B. X. Liu and H. D. Li, 41 (1990) 9523.CrossRefGoogle Scholar
  25. 25.
    L. J. Huang and B. X. Liu, Nucl. Instr. Meth. Phys. Res. B18 (1987) 256.Google Scholar
  26. 26.
    N. Karpe, L. U. Aaen Andersen, K. Dyrbye, J. Bottiger and K. V. Rao, Phys. Rev. B 39 (1989) 9874.CrossRefGoogle Scholar
  27. 27.
    D. A. Lilienfeld, L. S. Hung and J. W. Mayer, MRS Bull. 12 (1987) 31.CrossRefGoogle Scholar
  28. 28.
    D. A. Lilienfeld, J. W. Mayer, M. Nastasi, E. Rimini and B. M. Ullrich, Nuovo Cimento D 7 (1986) 134.CrossRefGoogle Scholar
  29. 29.
    D. A. Lilienfeld, M. Nastasi, H. H. Johnson, D. G. Ast and J. W. Mayer, J. Mater. Res. 2 (1986) 237.CrossRefGoogle Scholar
  30. 30.
    J. A. Eades, in “Encyclopedia of material sciences and engineering,” Vol. 6, edited by M. B. Bever (Pergamon, Oxford and MIT, Cambridge, 1988) p. 535.Google Scholar
  31. 31.
    P. M. Ossi, Mater. Sci. Engng. A115 (1989) 107.CrossRefGoogle Scholar
  32. 32.
    P. J. Steinhardt, Mater. Sci. Forum 22–24 (1987) 23.CrossRefGoogle Scholar
  33. 33.
    M. Audier and P. Guyot, in “Extended icosahedral structures (Aperiodicity and order),” Vol. 3, edited by M. V. Jaric and D. Gratias (Academic, Boston, 1988) ch. 1.Google Scholar
  34. 34.
    P. W. Stephens, in “Extended icosahedral structures (Aperiodicity and order)” Vol. 3, edited by M. V. Jaric and D. Gratias (Academic, Boston, 1988) ch. 3.Google Scholar
  35. 35.
    S. Matteson et M. A. Nicolet, in “Mestastable materials formation by ion implantation,” edited by S. T. Picraux and W. J. Choyke, (Materials Research Society Symposium Proceedings 7, Amsterdam, 1982) p. 3.Google Scholar
  36. 36.
    P. A. Bancel, P. A. Heiney, P. W. Stephens, A. I. Goldman and P. M. Horn, Phys. Rev. Lett. 54 (1985) 2422.CrossRefGoogle Scholar
  37. 37.
    J. W. Cahn, D. Shechtman and D. Gratias, J. Mater. Res. 1 (1986) 13.CrossRefGoogle Scholar
  38. 38.
    V. Elser, Phys. Rev. B 32 (1985) 4892.CrossRefGoogle Scholar
  39. 39.
    C. Kittel, “Introduction to solid state physics,” 5th edn Wiley, New York, 1976).Google Scholar
  40. 40.
    Avon, “Powder diffraction files, alphabetical Index, inorganic phases, 1988,” (International Centre For Diffraction Data, Swarthmore, Pennsylvania, 1988).Google Scholar
  41. 41.
    P. Villars and L. D. Calvert, “Pearson's handbook of crystallographic data for intermetallic phases,” (American Society of Metals, Metals Park, Ohio, 1985).Google Scholar
  42. 42.
    S. S. Lu, J. K. Liang and T. J. Shi, Acta Phys. Sinica 29 (1980) 469.Google Scholar
  43. 43.
    V. N. Gudzenko and A. F. Polesya, Russ. Metall. 5 (1976) 153.Google Scholar
  44. 44.
    J. Emsley, “The Elements,” (Clarendon, Oxford, 1987).Google Scholar
  45. 45.
    D. Gratias, R. Mosseri, J. Prost, J. Toner and M. Duneau, “Du cristal à l'amorphe (From crystalline to amorphous),” (Les éditions de physique, Les Ulis Cedex, France, 1987).Google Scholar
  46. 46.
    R. A. Dunlap and K. Dini, J. Phys. F 16 (1986) 11.CrossRefGoogle Scholar
  47. 47.
    W. G. Moffat, “The handbook of binary phase diagrams,” (Genium Publishing Corp., New York, 1984).Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • J. Tartas
    • 1
  • E. J. Knystautas
    • 1
  1. 1.Département de physiqueUniversité LavalQuébecCanada

Personalised recommendations