Journal of Materials Science

, Volume 29, Issue 22, pp 6004–6010 | Cite as

Lithium disorder in the vicinity of the superionic phase transition in monoclinic and rhombohedral Li3In2(PO4)3

  • V. V. Kravchenko
  • S. E. Sigaryov


Rhombohedral and monoclinic modifications of the Li3In2(PO4)3 compound have been studied by X-ray diffraction, infrared (i.r.) analysis, Raman light scattering, differential thermal analysis (DTA), differential scanning calorimetry (DSC) and impedance spectroscopy, in a wide temperature range of 290–600 K. Analysis of the data allows the suggestion that the superionic phase transition, observed in these materials in the temperature interval 370–385 K, belongs to Faraday type phase transformations. PO4 tetrahedra, which are a partition of the (In2P3O12) 300 3− rigid skeleton, have been found deformed. This seems to be due to an ordered lithium ion-vacancy distribution in the low temperature, non-superionic, polymorphs. With increasing temperature these deformations disappear. This disappearance can be caused by a decrease of the correlation length of the lithium ion-vacancy order.


Phase Transition Lithium Differential Scanning Calorimetry Thermal Analysis Phase Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. A. Genkina, L. A. Muradyan, B. A. Maximov, B. V. Merinov and S. E. Sigaryov, Kristallographiya 32 (1987) 74 (in Russian).Google Scholar
  2. 2.
    D. Tran Qui and S. Hamdoune, Acta Crystallogr. C43 (1987) 397.Google Scholar
  3. 3.
    Y. K. Naganovsky and S. E. Sigaryov, Solid State Ionics 50 (1992) 1.CrossRefGoogle Scholar
  4. 4.
    E. A. Genkina, L. N. Demyanets, A. K. Ivanov-Shits, B. A. Maximov, O. K. Melnikov and V. I. Simonov, Pisma v ZhETPh 38 (1983) 257 (in Russian).Google Scholar
  5. 5.
    I. P. Kondratyuk, M. I. Sirota, B. A. Maximov, L. A. Muradyan and V. I. Simonov, Kristallographiya 31 (1986) 488 (in Russian).Google Scholar
  6. 6.
    E. A. Genkina, L. A. Muradyan and B. A. Maximov, 31 (1986) 595 (in Russian).Google Scholar
  7. 7.
    A. B. Bykov, A. P. Chirkin, L. N. Demyanets, S. N. Doronin, E. A. Genkina, A. K. Ivanov-Shits, I. P. Kondratyuk, B. A. Maximov, O. K. Melnikov, L. N. Muradyan, V. I. Simonov and V. A. Timofeeva, Solid State Ionics 38 (1990) 31.CrossRefGoogle Scholar
  8. 8.
    F. D'Yvoire, M. Pintard-Screpel, E. Bretey and M. De La Rochere, 9, 10 (1983) 851.CrossRefGoogle Scholar
  9. 9.
    E. A. Genkina, B. A. Maximov, S. E. Sigaryov and I. A. Verin, Kristallographiya 36 (1991) 637 (in Russian).Google Scholar
  10. 10.
    I. P. Kondratyuk, B. A. Maximov and L. A. Muradyan, Dokl. AN SSSR 292 (1987) 1376 (in Russian).Google Scholar
  11. 11.
    M. B. Salamon, in “Physics of Superionic Conductors”, edited by M. B. Salamon (Springer, Berlin, 1979), 175.CrossRefGoogle Scholar
  12. 12.
    R. M. White and T. H. Geballe, “Long Range Order in Solids”, (Academic Press, New York, 1979).Google Scholar
  13. 13.
    M. T. Hutchings, K. Clausen, M. H. Dickens, W. Hayes, J. K. Kjems, P. G. Schnabel and C. Smith, J. Phys. C 17 (1984) 3903.CrossRefGoogle Scholar
  14. 14.
    V. V. Kravchenko, V. I. Michailov and S. E. Sigaryov, Solid State Ionics 50 (1991) 19.CrossRefGoogle Scholar
  15. 15.
    V. I. Michailov, B. N. Mavrin, A. K. Ivanov-Shits and S. E. Sigaryov, Kristallographiya 37 (1992) 760 (in Russian).Google Scholar
  16. 16.
    M. Barj, H. Perthius and P. Colomban, Solid State Ionics 9, 10 (1983) 845.CrossRefGoogle Scholar
  17. 17.
    V. V. Kravchenko and S. E. Sigaryov, Solid State Communications 83 (1992) 149.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • V. V. Kravchenko
    • 1
  • S. E. Sigaryov
    • 1
  1. 1.Institute of CrystallographyRussian Academy of SciencesMoscowRussia

Personalised recommendations