Advertisement

Journal of Materials Science

, Volume 29, Issue 22, pp 5985–5989 | Cite as

High-pressure autoclave curing for a thermoset composite: effect on the glass transition temperature

  • F. Y. C. Boey
  • T. H. Lee
  • P. L. Sullivan
Article

Abstract

The effect of high-pressure curing within an autoclave on the cured glass transition temperature (Tg) of a thermoset fibre-reinforced composite has been studied. The results indicate that an increase in the Tg value was obtained by a higher curing pressure as well as a lower moisture content. Both results have been related to the reduction in the microscopic free volume and the macroscopic void content of the matrix resin. Using the results obtained, the Tg increase was related to the applied autoclave pressure through equations based on both free-volume and thermodynamic concepts, with the results indicating a significantly higher effect than for homogeneous polymers. This has been attributed to a moisture-dominant diffusion process which has been used to explain the growth and reduction of voids.

Keywords

Glass Transition Temperature Diffusion Process Material Processing Free Volume High Cure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Y. C. Boey, Polym. Testing 9 (1990) 363.CrossRefGoogle Scholar
  2. 2.
    F. Boey and S. W. Lye, J. Mater. Process. Technol. 23(2) (1990) 121.CrossRefGoogle Scholar
  3. 3.
    F. Boey and S. W. Lye, Composites 23(4) (1992) 261.CrossRefGoogle Scholar
  4. 4.
    F. Boey and T. H. Lee, Polym. Testing 13 (1994) 47.CrossRefGoogle Scholar
  5. 5.
    J. H. Gibbs and E. A. Dimarzio, J. Chem. Phys. 28 (1958) 373.CrossRefGoogle Scholar
  6. 6.
    R. Shmha and P. S. Wilson, Macromolecules 6 (1973) 908.CrossRefGoogle Scholar
  7. 7.
    J. R. Stevens et al., J. Chem. Phys. 84 (1986) 1006.CrossRefGoogle Scholar
  8. 8.
    A. Eisenberg, in “Physical Properties of Polymers”, edited by J. E. Mark et al. (American Chemical Society, 1984) p. 55.Google Scholar
  9. 9.
    A. K. Doolittle, J. Appl. Phys. 22 (1951) 1471.CrossRefGoogle Scholar
  10. 10.
    M. L. Williams, R. F. Landel and J. D. Ferry, J. Amer. Chem. Soc. 77 (1955) 3701.CrossRefGoogle Scholar
  11. 11.
    P. J. Zoller, J. Appl. Polym. Sci, Polym. Phys. Edn 20 (1982) 1453.CrossRefGoogle Scholar
  12. 12.
    A. Eisenburg, J. Phys. Chem. 67 (1967) 1333.CrossRefGoogle Scholar
  13. 13.
    S. Saeki, M. Tsubokawa, J. Yamanaka and T. Yamaguchi, Polymer 33 (1992) 577.CrossRefGoogle Scholar
  14. 14.
    A. T. Dibenedetto, J. Polym. Sci. B: Polym. Phys. 25 (1987) 1949.CrossRefGoogle Scholar
  15. 15.
    H. Stutz, K. H. Illers and J. Mertes, 28 (1990) 1483.CrossRefGoogle Scholar
  16. 16.
    A. Hale and W. Mackosko, Macromolecules 24 (1991) 2610.CrossRefGoogle Scholar
  17. 17.
    J. L. Kardos, M. P. Dudukovic and R. Dave, in “Advances in Polymer Science 80: Epoxy Resin and Composites IV”, edited by K. Dusek (Springer, Berlin, 1986) p. 102.Google Scholar
  18. 18.
    T. H. Lee, F. Boey and N. L. Loh, to be publishedGoogle Scholar
  19. 19.
    D. S. Sanditov and G. M. Bartenev, Polym. Sci. USSR 32 (1990) 789.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • F. Y. C. Boey
    • 1
  • T. H. Lee
    • 1
  • P. L. Sullivan
    • 1
  1. 1.School of Mechanical and Production EngineeringNanyang Technological UniversitySingapore

Personalised recommendations