Advertisement

Journal of Materials Science

, Volume 29, Issue 22, pp 5953–5971 | Cite as

Anisotropic etching of silicon crystals in KOH solution

Part I Experimental etched shapes and determination of the dissolution slowness surface
  • C. R. Tellier
  • A. Brahim-Bounab
Article

Abstract

The anisotropic etching behaviour of various crystalline silicon plates in an aqueous KOH solution was studied. Variations of the etch rate with the angle of cut related to singly-rotated plates have been determined and orientation effects in the out-of-roundness profiles related to various {h k 0} sections have been analysed in terms of crystal symmetry. In addition, changes in the surface texture with crystal orientation were systematically investigated. All the experimental results furnished evidence for a dissolution process governed by the crystal orientation. A procedure has been proposed to derive the dissolution slowness surface from experiments starting from a tensorial representation of the anisotropic etching.

Keywords

Polymer Silicon Material Processing Surface Texture Crystal Orientation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Sangwal, “Etching of Crystals” (North-Holland, Amsterdam, 1987).Google Scholar
  2. 2.
    B. A. Irving, in “The Electrochemistry of Semiconductors”, edited by P. J. Holmes (Academic Press, London, 1962) pp. 256–89.Google Scholar
  3. 3.
    R. B. Heimann, in “Silicon Chemical Etching”, edited by J. Grabmaier (Springer, Berlin, 1982) pp. 197–224.Google Scholar
  4. 4.
    M. W. Wegner and J. M. Christie, Phys. Chem. Minerals. 9 (1983) 67.CrossRefGoogle Scholar
  5. 5.
    C. R. Tellier, Surf. Technol. 21 (1984) 83.CrossRefGoogle Scholar
  6. 6.
    H. C. Gatos and M. C. Lavine, J. Electrochem. Soc. 107 (1960) 433.CrossRefGoogle Scholar
  7. 7.
    M. Castagliola, C. R. Tellier and J. L. Vaterkowski, J. Mater. Sci. 21 (1986) 3551.CrossRefGoogle Scholar
  8. 8.
    J. W. Faust, in “The Surface Chemistry of Metals and Semiconductors”, edited by H. C. Gatos (Wiley, New York, 1960) p. 151.Google Scholar
  9. 9.
    P. J. Holmes, in “The electrochemistry of Semiconductors”, edited by P. J. Holmes (Academic Press, London, 1962) pp. 329–77.Google Scholar
  10. 10.
    K. E. Petersen, Proc. IEEE 70 (1982) 420.CrossRefGoogle Scholar
  11. 11.
    G. Delapierre, Sensors and Actuators 17 (1989) 123.CrossRefGoogle Scholar
  12. 12.
    S. K. Clark and K. D. Wise, IEEE Trans. Electron Devices ED-26 (1979) 1887.CrossRefGoogle Scholar
  13. 13.
    M. Bao and Y. Wang, Sensors and Actuators 12 (1987) 49.CrossRefGoogle Scholar
  14. 14.
    K. E. Petersen, IEEE Trans. Electron Devices ED-25 (1978) 1241.CrossRefGoogle Scholar
  15. 15.
    R. J. Wilfinger, P. H. Bardell and D. S. Chabra, IBM J. Res. Devel. 12 (1968) 113.CrossRefGoogle Scholar
  16. 16.
    G. Kaminsky, J. Vac. Sci. Technol. B3 (1985) 1015.CrossRefGoogle Scholar
  17. 17.
    A. I. SToller, RCA Rev. June (1970) 271.Google Scholar
  18. 18.
    R. A. Buser and N. F. De Rooj, Sensors and Actuators 17 (1989) 145.CrossRefGoogle Scholar
  19. 19.
    Y. Linden, L. Tenerz, J. Tiren and B. Hok, 16 (1989) 67.CrossRefGoogle Scholar
  20. 20.
    K. Yamada, M. Nishihara, R. Kanzawa and R. Kobayashi, 4 (1983) 63.CrossRefGoogle Scholar
  21. 21.
    G. Blasquez, P. Pons and A. Boukabache, 17 (1989) 387.CrossRefGoogle Scholar
  22. 22.
    W. H. Ko, J. Hynecek and S. F. Boettcher, IEEE Trans. Electron Devices ED-26 (1979) 1896.Google Scholar
  23. 23.
    H. Seidel and L. Csepregi, Sensors and Actuators 4 (1983) 455.CrossRefGoogle Scholar
  24. 24.
    H. Seidel, L. Cesepregi, A. Heuberger and H. Baumgartel, J. Electrochem. Soc. 137 (1990) 3613.CrossRefGoogle Scholar
  25. 25.
    D. B. Lee, J. Appl. Phys. 40 (1969) 4569.CrossRefGoogle Scholar
  26. 26.
    K. E. Bean, IEEE Trans. Electron Devices ED-25 (1978) 1185.CrossRefGoogle Scholar
  27. 27.
    M. J. Declercq, L. Gerzberg and J. M. Meindi, J. Electrochem. Soc. 122 (1975) 545.CrossRefGoogle Scholar
  28. 28.
    M. M. Abu-Zeid, 134 (1984) 2138.CrossRefGoogle Scholar
  29. 29.
    X. P. Wu and W. H. Ko, Sensors and Actuators 18 (1989) 207.CrossRefGoogle Scholar
  30. 30.
    Y. Kanda and A. Yasukawa, Sensors and Actuators 2 (1982) 283.CrossRefGoogle Scholar
  31. 31.
    Y. Kanda, 4 (1983) 199.CrossRefGoogle Scholar
  32. 32.
    Y. Wang, M. Bao and L. Yu, 18 (1989) 221.CrossRefGoogle Scholar
  33. 33.
    F. C. Frank, in “Growth and Perfection of Crystals”, edited by R. H. Doremus, B. W. Robert and D. Turnbull (Wiley, New York, 1965) p. 411.Google Scholar
  34. 34.
    F. C. Frank and M. B. Ives, J. Appl. Phys. 31 (1960) 1996.CrossRefGoogle Scholar
  35. 35.
    D. W. Shaw, J. Electrochem. Soc. 128 (1981) 874.CrossRefGoogle Scholar
  36. 36.
    D. W. Shaw, J. Crystal Growth 47 (1979) 509.CrossRefGoogle Scholar
  37. 37.
    C. R. Tellier and J. L. Vaterkowski, J. Mater. Sci. 24 (1989) 1077.CrossRefGoogle Scholar
  38. 38.
    C. R. Tellier and T. G. Leblois, in “Proceedings of the Third European Time and Frequency Forum, BesanÇon, France, 1989 (Imprimerie Conseil Général du Doubs, BesanÇon, 1989) pp. 246–55.Google Scholar
  39. 39.
    C. R. Tellier, J. Crystal Growth 100 (1990) 515.CrossRefGoogle Scholar
  40. 40.
    C. R. Tellier, T. G. Leblois and P. C. Maitre, J. Mater. Sci. 24 (1989) 3029.CrossRefGoogle Scholar
  41. 41.
    A. Brahim-Bounab, J. Y. Amaudrut, C. R. Tellier, 26 (1991) 5585.CrossRefGoogle Scholar
  42. 42.
    C. R. Tellier, J. Y. Amaudrut and A. Brahimbounab, 26 (1991) 5595.CrossRefGoogle Scholar
  43. 43.
    T. Leblois and C. R. Tellier, J. Phys. III 2 (1992) 1259.Google Scholar
  44. 44.
    A. Brahim-Bounab and C. R. Tellier, in “Proceedings of the 6th European Frequency and Times Forum”, Noordwijk, The Netherlands, March 1992 (European Space Agency, Paris, 1992) pp. 355–60.Google Scholar
  45. 45.
    C. R. Tellier, T. Leblois, A. Brahim-Bounab and D. Benmessaouda, in “Proceedings of the 1st Japanese-French Congress of Mecatronique”, BesanÇon, France, October 1992 (Imprimerie du Conseil Général du Doubs, BesanÇon, 1992) 6 pp.Google Scholar
  46. 46.
    C. R. Tellier and F. Jouffroy, J. Mater. Sci. 18 (1983) 3621.CrossRefGoogle Scholar
  47. 47.
    C. R. Tellier, in “Proceedings of the 39th Annual Symposium on Frequency Control”, Philadelphia, PA, May 1985 (Institute of Electronic and Electrical Engineers, New York, 1985) p. 282.Google Scholar
  48. 48.
    A. P. Honess, “The Nature, Origin and Interpretation of the Etch Figures on Crystals” (Wiley, New York, 1927) Chs III and VI.Google Scholar
  49. 49.
    C. R. Tellier, P. Blind and D. Jozwick, in “Proceedings of the 2nd European Frequency and Time Forum”, 5971-01, Switzerland, March 1988 (Fondation Suisse pour la Recherche en Microtechniques, Neuchâtel, 1988) pp. 937–58.Google Scholar
  50. 50.
    B. A. Irving, J. Appl. Phys. 31 (1960) 109.CrossRefGoogle Scholar
  51. 51.
    “Standard on Piézoelectricity” (IEEE, New York, 1978) p. 15.Google Scholar
  52. 52.
    A. Brahim-Bounab, Thesis 279, University of Franche-Comté, BesanÇon, France, 25 September 1992.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • C. R. Tellier
    • 1
  • A. Brahim-Bounab
    • 1
  1. 1.Laboratoire de Chronométrie Electronique et PiézoélectricitéEcole Nationale Supérieure de Mécanique et des MicrotechniquesBesancon CedexFrance

Personalised recommendations