Advertisement

Journal of Materials Science

, Volume 29, Issue 22, pp 5947–5952 | Cite as

Strength estimation for silicon nitride specimens with a spherical void

  • M. Kaji
  • S. Yoshiura
  • M. Nishimura
Article
  • 27 Downloads

Abstract

Silicon nitride specimens embedded with a single spherical void were prepared for a flexural strength test. The measured flexural strengths of the specimens were compared with theoretically estimated strengths. Estimation of the strengths was done using a Gibbs free-energy criterion. The energy was calculated by Eshelby's equivalent inclusion method for a specimen with an embedded void. Good correspondence was obtained between the experimental and the estimated fracture loads. A deviation of the estimated strength from the experimental value was observed for voids whose diameters were comparable with intrinsic defects.

Keywords

Nitride Material Processing Flexural Strength Silicon Nitride Strength Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. Salem, S. R. Choi, M. R. Freedman and M. G. Jenkins, J. Mater. Sci. 27 (1992) 4421.CrossRefGoogle Scholar
  2. 2.
    D. Munz, O. Rosenfelder, F. Goebbels and H. Reiter, in “Fracture Mechanics of Ceramics”, Vol. 7, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman, F. F. Lange and R. E. Tressler (Plenum Press, New York, 1986) p. 265.CrossRefGoogle Scholar
  3. 3.
    A. Okada and N. Hirosaki, Yogyo-Kyokai-Shi (J. Ceram. Soc. Jpn) 95 (1987) 400.CrossRefGoogle Scholar
  4. 4.
    J. Heinrich and D. Munz, Ceram. Bull. 59 (1980) 1221.Google Scholar
  5. 5.
    J. Heinrich and D. Munz, Commun. Am. Ceram. Soc. 65 (1982) C34.CrossRefGoogle Scholar
  6. 6.
    F. I. Baratta, J. Am. Ceram. Soc. 61 (1978) 490.CrossRefGoogle Scholar
  7. 7.
    F. I. Baratta, Commun. Am. Ceram. Soc. 64 (1981) C3.Google Scholar
  8. 8.
    A. G. Evans and G. Tappin, Proc. Br. Ceram. Soc. 20 (1972) 275.Google Scholar
  9. 9.
    A. G. Evans, D. R. Biswas and R. M. Fulrath, J. Am. Ceram. Soc. 62 (1979) 101.CrossRefGoogle Scholar
  10. 10.
    D. J. Green, 63 (1980) 342.CrossRefGoogle Scholar
  11. 11.
    G. G. Trantina and M. Barishpolsky, Eng. Fract. Mech. 20 (1984) 1.CrossRefGoogle Scholar
  12. 12.
    V. D. Krstic, Acta Metall. 33 (1985) 521.CrossRefGoogle Scholar
  13. 13.
    J. D. Eshelby, Proc. R. Soc. A241 (1957) 376.Google Scholar
  14. 14.
    D. Broek, “Elementary Engineering Fracture Mechanics”, 4th Edn (Martinus Nijhoff, Dordrecht, 1986) p. 123.CrossRefGoogle Scholar
  15. 15.
    T. Mura and T. Mori, “Maikuromekanikkusu (Micromechanics)” (Baifuukan, Tokyo, 1976) p. 23.Google Scholar
  16. 16.
    T. Mura, “Micromechanics of Defects in Solids” (Martinus Nijhoff, The Hague, 1982) p. 1.CrossRefGoogle Scholar
  17. 17.
    M. Taya and R. J. Arsenault, “Metal Matrix Composite” (Pergamon Press, Oxford, 1989) p. 82.Google Scholar
  18. 18.
    T. Nose and T. Fujii, J. Am. Ceram. Soc. 71 (1988) 328.CrossRefGoogle Scholar
  19. 19.
    A. Kokaji, H. Uchimura and M. Kaji J. Ceram. Soc. Jpn 100 (1992) 1304.CrossRefGoogle Scholar
  20. 20.
    M. Sakai and T. Miyajima, J. Eur. Ceram. Soc. 7 (1991) 249.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • M. Kaji
    • 1
  • S. Yoshiura
    • 1
  • M. Nishimura
    • 1
  1. 1.Central Research LaboratoryKyocera CorporationKagoshimaJapan

Personalised recommendations