Advertisement

Journal of Materials Science

, Volume 29, Issue 22, pp 5934–5946 | Cite as

Preparation of ceramic coatings from pre-ceramic precursors

Part II SiC on metal substrates
  • M. R. Mucalo
  • N. B. Milestone
Article

Abstract

SiC-coatings derived from pyrolysis of polycarbosilane layers on stainless steel and mild steel substrates have been studied using a combination of scanning electron microscopy (SEM), energy dispersive X-ray analysis, X-ray photoelectron spectroscopy and ultramicrohardness techniques. The coatings on mild steel plates at firing temperatures of 700‡C are cracked but uncracked SiC coatings can be formed on stainless steel substrates at 700–800‡C. X-ray photoelectron studies show that these coatings are covered with a layer of SiO2 and contain graphitic carbon, while Rutherford backscattering studies indicate inhomogeneities in the coating layer due to mixing of substrate and coating components at the interface between the two. Ultramicrohardness results indicate the SiC/stainless steel coatings formed at 800‡C are softer than the equivalent SiC coatings formed on alumina substrates at 1100‡C. Above 800‡C, a possible combination of both thermal expansion mismatch and CrN formation, which causes the growth of chromium-rich nodules in the stainless steel, serve to disrupt and ultimately destroy the coherence of the SiC coatings. The use of sol-gel-derived SiO2 coatings as a barrier does not prevent the destruction of the SiC coating by this mechanism.

Keywords

Pyrolysis Mild Steel Steel Substrate Ceramic Coating Graphitic Carbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. R. Mucalo, N. B. Milestone, I. C. Vickridge and M. V. Swain, J. Mater. Sci. 29 (1994) 0000.CrossRefGoogle Scholar
  2. 2.
    S. Yajima, T. Shishido, H. Kayano, Y. Higashiguchi and T. Amamo, 12 (1977) 1834.CrossRefGoogle Scholar
  3. 3.
    D. Seyferth, N. Bryson, D. P. Workman and C. A. Sobon, J. Am. Ceram. Soc. 74 (1991) 2687.CrossRefGoogle Scholar
  4. 4.
    E. J. A. Pope and J. D. McKenzie, J. Non-Cryst. Solids 87 (1986) 185.CrossRefGoogle Scholar
  5. 5.
    D. Briggs and M. P. Seah (eds.), in “Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy” (Wiley, New York, 1983).Google Scholar
  6. 6.
    L. R. Doolittle, Nucl. Instrum. Meth. B9 (1985) 334.Google Scholar
  7. 7.
    “RUMP Users Manual” (Computer Graphics Services, 52 Genung Circle, Ithaca, New York 14850, USA).Google Scholar
  8. 8.
    J. S. Field, Surf. Coat. Technol. 36 (1988) 817.CrossRefGoogle Scholar
  9. 9.
    T. J. Bell, A. Bendeli, J. S. Field, M. V. Swain and E. G. Thwaite, Metrologia 28 (1991/92) 463.CrossRefGoogle Scholar
  10. 10.
    T. Taki, M. Inui, K. Okamura and M. Sato, J. Mater. Sci. Lett. 8 (1989) 918.CrossRefGoogle Scholar
  11. 11.
    M. R. Mucalo, N. B. Milestone and I. W. M. Brown, submitted to J. Amer. Ceram. Soc. Google Scholar
  12. 12.
    C. J. Smithell (ed.), “Metals Reference Book” (Butterworths, London, 1976).Google Scholar
  13. 13.
    J. F. Lynch (ed.), “Engineering Property Data on Selected Ceramics”, Vol. 2, (Metals and Ceramics Information Centre, Battelle, Columbus Laboratories, OH, 1979) p. 23.Google Scholar
  14. 14.
    K. Kanaya and S. Okayama, J. Phys. D Appl. Phys. 5 (1972) 43.CrossRefGoogle Scholar
  15. 15.
    R. D. Willenbruch, C. R. Clayton, M. Oversluizen, D. Kim and Y. Lu, Corros. Sci. 31 (1990) 179.CrossRefGoogle Scholar
  16. 16.
    R. A. Higgins, “Materials for the Engineering Technician” (Hodder and Stoughton, London, 1984) p. 164.Google Scholar
  17. 17.
    M. Cavallini, F. Felli, R. Fratesi and F. Veniali, Werkstoffe Korrosion 33 (1982) 386.CrossRefGoogle Scholar
  18. 18.
    P. Marcus and M. E. Bussell, Appl. Surf. Sci. 59 (1992) 7.CrossRefGoogle Scholar
  19. 19.
    P. Schreck, C. Vix-Guterl, P. Ehrburger and J. Lahaye, J. Mater. Sci. 27 (1992) 4243.CrossRefGoogle Scholar
  20. 20.
    K. M. Geib, C. W. Wilmsen, J. E. Mahan and M. C. Bost, J. Appl. Phys. 61 (1987) 5299.CrossRefGoogle Scholar
  21. 21.
    Y. Mizokawa, S. Nakanishi and S. Miyase, Jpn J. Appl. Phys. 28 (1989) 2570.CrossRefGoogle Scholar
  22. 22.
    T. A. Carlson, “Photoelectron and Auger Spectroscopy” (Plenum Press, New York, 1975) p. 355.CrossRefGoogle Scholar
  23. 23.
    P. L. Coustumer, M. Monthioux and A. Oberlin, J. Eur. Ceram. Soc. 11 (1993) 95.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • M. R. Mucalo
    • 1
  • N. B. Milestone
    • 1
  1. 1.Materials Science and Performance (MSP) GroupThe New Zealand Institute for Industrial Research and Development (Industrial Research Ltd)Lower HuttNew Zealand

Personalised recommendations