Advertisement

Journal of Materials Science

, Volume 29, Issue 22, pp 5916–5926 | Cite as

The toughness of epoxy-poly(butylene terephthalate) blends

  • M. E. Nichols
  • R. E. Robertson
Article

Abstract

Blends containing 5% poly(butylene terephthalate) (PBT) in an anhydride-cured epoxy with three different PBT morphologies were studied. The three morphologies were a dispersion of spherulites, a structureless gel and a gel with spherulites. The average fracture toughnesses, KIc, and fracture energies, GIc, for those morphologies were 0.83, 2.3 and 1.8 MPa m1/2 and 240, 2000 and 1150 J m−2, respectively. These values should be compared with the values of 0.72 MPa m1/2 and 180 J m−2, respectively, for the cured epoxy without PBT. The elastic moduli and yield strengths in compression for all three blend morphologies remained essentially unchanged from those of the cured epoxy without PBT, namely, 2.9 GPa for the modulus and 115 MPa for the yield strength. The fracture surfaces of the cured spherulitic dispersion blends indicate the absorption of fracture energy by crack bifurcation induced by the spherulites. The fracture surfaces of the cured structureless gel blends indicate that fracture energy was absorbed by matrix and PBT plastic deformation and by spontaneous crack bifurcation. But phase transformation of the PBT and anelastic strain of the matrix below the fracture surfaces may account for most of the large fracture energy of the cured structureless gel blends.

Keywords

Epoxy Elastic Modulus Plastic Deformation Yield Strength Fracture Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. N. Sultan and F. J. McGarry, J. Polym. Sci., Polym. Phys. Ed. 13 (1973) 29.Google Scholar
  2. 2.
    C. B. Bucknall, “Toughened plastics” (Applied Science, London, 1977).CrossRefGoogle Scholar
  3. 3.
    W. D. Bascom, R. Y. Ting, R. J. Moulton, C. K. Riew and A. R. Siebert, J. Mater. Sci. 16 (1981) 2657.CrossRefGoogle Scholar
  4. 4.
    A. J. Kinloch, S. J. Shaw, D. A. Tod and D. L. Hunston, Polymer 24 (1983) 1341.CrossRefGoogle Scholar
  5. 5.
    A. F. Yee and R. A. Pearson, J. Mater. Sci. 21 (1986) 2462.CrossRefGoogle Scholar
  6. 6.
    R. A. Pearson and A. F. Yee, 21 (1986) 2475.CrossRefGoogle Scholar
  7. 7.
    R. A. Pearson and A. F. Yee, J. Mater. Sci. 24 (1989) 2571.CrossRefGoogle Scholar
  8. 8.
    A. C. Garg and Y.-W. Mai, Compos. Sci. Technol. 31 (1988) 179.CrossRefGoogle Scholar
  9. 9.
    W. B. Cherry and K. W. Thompson, J. Mater. Sci. 16 (1981) 1913.CrossRefGoogle Scholar
  10. 10.
    T. D. Chang and J. O. Brittain, Polym. Engng. Sci. 22 (1982) 1228.CrossRefGoogle Scholar
  11. 11.
    C. B. Bucknall and I. K. Partridge, Polymer 24 (1983) 639.CrossRefGoogle Scholar
  12. 12.
    J. L. Hedrick, I. Yilgor, G. L. Wilkes and J. E. McGrath, Polym. Bull. 13 (1985) 201.CrossRefGoogle Scholar
  13. 13.
    C. B. Bucknall and I. K. Partridge, Polym. Engng. Sci. 26 (1986) 54.CrossRefGoogle Scholar
  14. 14.
    R. S. Raghava, J. Polym. Sci., Polym. Phys. Ed. 25 (1987) 1017.CrossRefGoogle Scholar
  15. 15.
    S. C. Kim and H. R. Brown, J. Mater. Sci. 22 (1987) 2589.CrossRefGoogle Scholar
  16. 16.
    R. S. Raghava, J. Polym. Sci., Polym. Phys. Ed. 26 (1988) 65.CrossRefGoogle Scholar
  17. 17.
    C. B. Bucknall and A. H. Gilbert, Polymer 30 (1989) 213.CrossRefGoogle Scholar
  18. 18.
    J. L. Hedrick, I. Yilgor, M. Jurek, J. C. Hedrick, G. L. Wilkes and J. E. McGrath, Polymer 32 (1991) 2020.CrossRefGoogle Scholar
  19. 19.
    G. S. Bennett, R. J. Farris and S. A. Thompson, 32 (1991) 1633.CrossRefGoogle Scholar
  20. 20.
    J. K. Kim and R. E. Robertson, J. Mater. Sci. 27 (1992) 161.CrossRefGoogle Scholar
  21. 21.
    J. K. Kim and R. E. Robertson, J. Mater. Sci. 27 (1992) 3000.CrossRefGoogle Scholar
  22. 22.
    J. K. Kim and R. E. Robertson, in “Toughened plastics I”, edited by C. K. Riew and A. J. Kinloch (American Chemical Society, Washington, DC, 1993) pp. 427–49.CrossRefGoogle Scholar
  23. 23.
    W. N. Kim and L. M. Burns, Makromol. Chem. 190 (1988) 661.CrossRefGoogle Scholar
  24. 24.
    M. E. Nichols and R. E. Robertson, J. Polym. Sci., Polym. Phys. Ed. 32 (1994) 573.CrossRefGoogle Scholar
  25. 25.
    M. E. Nichols and R. E. Robertson, J. Polym. Sci., Polym. Phys. Ed. 32 (1994) 1607.CrossRefGoogle Scholar
  26. 26.
    A. J. Kinloch and R. J. Young, “Fracture behaviour of polymers” (Elsevier, London, 1983).Google Scholar
  27. 27.
    R. J. Young and P. W. R. Beaumont, J. Mater. Sci. 12 (1977) 684.CrossRefGoogle Scholar
  28. 28.
    T. Ricco, R. Frassine and A. Pavan, 25 (1990) 1517.CrossRefGoogle Scholar
  29. 29.
    A. Takahashi, T. Nakamura and I. Kagawa, Polym. J. 3 (1972) 207.CrossRefGoogle Scholar
  30. 30.
    E. D. T. Atkins, D. H. Issac, A. Keller and K. Miyasaka, J. Polym. Sci., Polym. Phys. Ed. 15 (1977) 211.CrossRefGoogle Scholar
  31. 31.
    S. Wellinghoff, J. Shaw and E. Baer, Macromolecules 12 (1979) 932.CrossRefGoogle Scholar
  32. 32.
    J.-M. Guenet, B. Lotz and J.-C. Wittmann, 18 (1985) 420.CrossRefGoogle Scholar
  33. 33.
    R. C. Domszy, R. Alamo, C. O. Edwards and L. Mandelkern 19 (1986) 310.CrossRefGoogle Scholar
  34. 34.
    J.-M. Guenet, 19 (1986) 1961.CrossRefGoogle Scholar
  35. 35.
    W. Stoks, H. Berghmans, P. Molddenaers and J. Mewis, Brit. Polym. J. 20 (1988) 361.CrossRefGoogle Scholar
  36. 36.
    J. H. Aubert, Macromolecules 21 (1988) 3468.CrossRefGoogle Scholar
  37. 37.
    K. H. Hsieh and J. L. Han, J. Polym. Sci., Polym. Phys. Ed. 28 (1990) 623.CrossRefGoogle Scholar
  38. 38.
    K. H. Hsieh and J. L. Han, J. Polym. Sci., Polym. Phys. Ed. 28 (1990) 783.CrossRefGoogle Scholar
  39. 39.
    H. Xiao, Z. H. Ping, J. W. Xie and T. Y. Yu, J. Polym. Sci., Polym. Chem. Ed. 28 (1990) 585.CrossRefGoogle Scholar
  40. 40.
    R. E. Robertson and V. E. Mindroiu, Polym. Engng. Sci. 27 (1987) 55.CrossRefGoogle Scholar
  41. 41.
    J. S. Covavisaruch, R. E. Robertson and F. E. Filisko, J. Mater. Sci. 27 (1992) 990.CrossRefGoogle Scholar
  42. 42.
    R. E. Robertson, V. E. Mindroiu and M.-F. Cheung, Compos. Sci. Technol. 22 (1985) 197.CrossRefGoogle Scholar
  43. 43.
    S. Kunz-Douglass, P. W. R. Beaumont and M. F. Ashby, J. Mater. Sci. 15 (1980) 1109.CrossRefGoogle Scholar
  44. 44.
    L. F. R. Rose, Mech. Mater. 8 (1987) 11.CrossRefGoogle Scholar
  45. 45.
    F. F. Lange and K. C. Radford, J. Mater. Sci. 6 (1971) 1197.CrossRefGoogle Scholar
  46. 46.
    S. Wu, J. Polym. Sci., Phys. Ed. 21 (1983) 699.CrossRefGoogle Scholar
  47. 47.
    S. Wu, Polymer 26 (1985) 1855.CrossRefGoogle Scholar
  48. 48.
    A. Margolina and S. Wu, 29 (1989) 2170.CrossRefGoogle Scholar
  49. 49.
    R. A. Pearson, PhD Thesis, The University of Michigan, Ann Arbor (1990).Google Scholar
  50. 50.
    K. Tashiro, Y. Nakai, M. Kobayashi and H. Tadokoro, Macromolecules 13 (1980) 137.CrossRefGoogle Scholar
  51. 51.
    Z. Mencik, J. Polym. Sci., Polym. Phys. Ed. 13 (1975) 2173.CrossRefGoogle Scholar
  52. 52.
    I. M. Hall and M. G. Pass, Polymer 17 (1976) 807.CrossRefGoogle Scholar
  53. 53.
    M. Yokouchi, Y. Sakakibara, Y. Chatani, H. Tadokoro, T. Tanaka and K. Yoda, Macromolecules 9 (1976) 266.CrossRefGoogle Scholar
  54. 54.
    B. Stambaugh, J. L. Koenig and J. B. Lando, J. Polym. Sci., Polym. Phys. Ed. 17 (1979) 1053.CrossRefGoogle Scholar
  55. 55.
    B. Stambaugh, J. B. Lando and J. L. Koenig, 17 (1979) 1063.CrossRefGoogle Scholar
  56. 56.
    B. R. Lawn and T. R. Wilshaw, “Fracture of brittle solids” (Cambridge University Press, Cambridge, 1975) pp. 52–6.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • M. E. Nichols
    • 1
  • R. E. Robertson
    • 1
  1. 1.Department of Materials Science and EngineeringThe University of MichiganAnn ArborUSA

Personalised recommendations