Advertisement

Journal of Materials Science

, Volume 29, Issue 22, pp 5911–5915 | Cite as

Crystal structures of TiO2 thin coatings prepared from the alkoxide solution via the dip-coating technique affecting the photocatalytic decomposition of aqueous acetic acid

  • K. Kato
  • A. Tsuzuki
  • H. Taoda
  • Y. Torii
  • T. Kato
  • Y. Butsugan
Article

Abstract

TiO2 coatings with different crystal structures were prepared from alkoxide solutions via the dip-coating technique. The physical properties, except the crystal structure, were adjusted to distinguish the effect of crystal structure on their photocatalytic property. The results of photocatalytic measurements using TiO2 coatings with different crystal structures showed that the decomposition of aqueous acetic acid was enhanced by the content of anatase phase.

Keywords

Polymer Acetic TiO2 Crystal Structure Acetic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Fujishima and K. Honda, Bull. Chem. Soc. Jpn 44 (1971) 1148.CrossRefGoogle Scholar
  2. 2.
    A. Fujishima and K. Honda, Nature 238 (5358) (1972) 37.CrossRefGoogle Scholar
  3. 3.
    T. Hisanaga, K. Harada and K. Tanaka, J. Photochem. Photobiol. A Chem. 53 (1990) 113.CrossRefGoogle Scholar
  4. 4.
    E. Pelizetti and C. Minero, Electrochim. Acta 38 (1993) 47.CrossRefGoogle Scholar
  5. 5.
    D. F. Ollis and H. Al-Ekabi (eds), “Proceedings of The First International Conference on TiO2 Photocatalytic Purification and Treatment of Water and Air”, London, November 1992 (Elsevier B.V., Amsterdam, 1993).Google Scholar
  6. 6.
    M. Takahashi, K. Mita, H. Toyuki and M. Kume, J. Mater. Sci. 24 (1989) 243.CrossRefGoogle Scholar
  7. 7.
    C. Mailhe-Randolph, A. J. Mcevoy and M. Gratzel, 26 (1991) 3305.CrossRefGoogle Scholar
  8. 8.
    T. Yoko, A. Yuasa, K. Kamiya and S. Sakka, J. Electrochem. 138 (1991) 2279.CrossRefGoogle Scholar
  9. 9.
    K. Kato, Ceram. Trans. 22 (1991) 63.Google Scholar
  10. 10.
    K. Kato, Bull. Chem. Soc. Jpn 65 (1992) 34.CrossRefGoogle Scholar
  11. 11.
    K. Kato, J. Ceram. Soc. Jpn 101 (1993) 245.CrossRefGoogle Scholar
  12. 12.
    T. Kato, Y. Butsugan, K. Kato, B. H. Loo and A. Fujishima, Denki Kagaku 61 (1993) 877.Google Scholar
  13. 13.
    A. Tsuzuki, H. Murakami, K. Kani, S. Kawakami and Y. Torii, J. Mater. Sci. Lett. 9 (1990) 624.CrossRefGoogle Scholar
  14. 14.
    A. Tsuzuki, H. Murakami, K. Kani, K. Watari and Y. Torii, 10 (1991) 125.CrossRefGoogle Scholar
  15. 15.
    A. Tsuzuki, K. Kani, K. Watari and Y. Torii, 11 (1992) 1157.CrossRefGoogle Scholar
  16. 16.
    K. Kani, H. Murakami, K. Watari, A. Tsuzuki and Y. Torii, 11 (1992) 1605.CrossRefGoogle Scholar
  17. 17.
    A. Tsuzuki, K. Kani, K. Watari, and Y. Torii, 11 (1992) 1626.CrossRefGoogle Scholar
  18. 18.
    Y. Takahashi and Y. Matsuoka, J. Mater. Sci. 23 (1988) 2259.CrossRefGoogle Scholar
  19. 19.
    D. Duonghong, E. Borgarello and M. Gratzel, J. Am. Chem. Soc. 103 (1981) 4685.CrossRefGoogle Scholar
  20. 20.
    M. Anpo, T. Shima, S. Kodama and Y. Kubokawa, J. Phys. Chem. 91 (1987) 4305.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • K. Kato
    • 1
  • A. Tsuzuki
    • 1
  • H. Taoda
    • 1
  • Y. Torii
    • 1
  • T. Kato
    • 2
  • Y. Butsugan
    • 2
  1. 1.Government Industrial Research Institute, NagoyaNagoyaJapan
  2. 2.Department of Applied ChemistryNagoya Institute of TechnologyNagoyaJapan

Personalised recommendations