Advertisement

Journal of Materials Science

, Volume 29, Issue 22, pp 5903–5910 | Cite as

Observations of the micro-mechanisms of fatigue-crack initiation in polycarbonate

  • T. -J. Chen
  • A. Chudnovsky
  • C. P. Bosnyak
Article

Abstract

The mechanisms of crack initiation in tensile fatigue of single-edge notched specimens of polycarbonate of varying thickness have been elucidated. At low stresses and long times microcracking and localized yielding occurred to form regular diamond-shaped cells on a scale of 2–4 Μm. On increasing the stress level with thin specimens (<1 mm), the microshear bands coalesced to form macroscopic damage zones of yielded material around the notch, followed by crack tearing from the notch surface. With increasing specimen thickness, restriction of shear banding ensued and a stable, semi-elliptical cavitation, or pop-in, formed about 10–100 Μm ahead of the notch, dependent on specimen geometry. As a result, the ligament formed between the notch and pop-in consists of yielded material. Brittle behaviour resulted with further increases in specimen thickness on loading, i.e. when the ligament could not be stabilized.

Keywords

Fatigue Brittle Cavitation Crack Initiation Shear Banding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T-J. Chen, C. P. Bosnyak and A. Chudnovsky, J. Appl. Polym. Sci., 49 (1993) 1909.CrossRefGoogle Scholar
  2. 2.
    D. Hull and T. W. Owen, J. Polym, Sci. Polym. Phys. Ed. 1 (1973) 2039.CrossRefGoogle Scholar
  3. 3.
    N. J. Mills, J. Mater. Sci. 11 (1976) 363.CrossRefGoogle Scholar
  4. 4.
    A. Kim, C. P. Bosnyak and A. Chudnovsky, J. Appl. Polym. Sci., 49 (1993) 885.CrossRefGoogle Scholar
  5. 5.
    H. Nisitani and H. Hyakutake, Eng. Fract. Mech. 22 (1985) 359.CrossRefGoogle Scholar
  6. 6.
    D. G. LéGrand, J. Appl. Polym. Sci. 13 (1969) 2129.CrossRefGoogle Scholar
  7. 7.
    M. Ishikawa, I. Narisawa and H. Ogawa. J. Polym. Sci. Polym. Phys. Ed. 15 (1977) 1791.CrossRefGoogle Scholar
  8. 8.
    M. Ishikawa and I. Narisawa, J. Mater. Sci. 18 (1983) 2826.CrossRefGoogle Scholar
  9. 9.
    F-C. Chang and H-C. Hsu, J. Appl. Polym. Sci. 43 (1991) 1025.CrossRefGoogle Scholar
  10. 10.
    M. Parvin and J. G. Williams, Int. J. Fract. 11 (1975) 963.Google Scholar
  11. 11.
    C. C. Chau and J. C. M. Li, J. Mater. Sci. 14 (1979) 1593.CrossRefGoogle Scholar
  12. 12.
    C. C. Chau and J. C. M. Li, J. Mater. Sci. 14 (1979) 2172.CrossRefGoogle Scholar
  13. 13.
    M. Kitagawa, 17 (1982) 2514.CrossRefGoogle Scholar
  14. 14.
    M. Ma, K. Vijayan, A. Hiltner and E. Baer, 24 (1989) 2687.CrossRefGoogle Scholar
  15. 15.
    R. Hill, Q. J. Mech. Appl. Maths. 2 (1949) 40.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • T. -J. Chen
    • 1
  • A. Chudnovsky
    • 1
  • C. P. Bosnyak
    • 2
  1. 1.Department of Civil Engineering, Mechanics and MetallurgyUniversity of Illinois at ChicagoChicagoUSA
  2. 2.The Dow Chemical Company, Polycarbonate and Blends ResearchFreeportUSA

Personalised recommendations