Journal of Materials Science

, Volume 29, Issue 22, pp 5892–5902 | Cite as

Analytical description of the bending behaviour of NiTi shape-memory alloys

  • R. Plietsch
  • C. Bourauel
  • D. Drescher
  • B. Nellen


Shape-memory alloys (SMA) exhibit “super-elastic” deformation behaviour in both tensile and bending tests: linear-elastic and ideal-plastic sections occur alternately during a load/unload cycle. A new analytical model for the description of pure bending of SMA on the background of continuum mechanics is given. This model allows mathematical derivation of elasticity parameters needed for the characterization of SMA deformation. The parameter set consists of six elastic moduli and three strain limits, leading to a total of nine mechanical quantities necessary for analytically setting up the associated bending moment/bending angle diagram. The physical relevance of the elasticity parameters delivered by the model is checked by comparing experimental and theoretical (computed on the base of the parameter set) force systems on a T-shaped spring.


Polymer Material Processing Analytical Description Deformation Behaviour Elastic Modulo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. E. Wang, B. F. Desavage and W. J. Buehler, J. Appl. Phys. 39 (1968) 2166.CrossRefGoogle Scholar
  2. 2.
    W. J. Buehler and F. E. Wang, Ocean Eng. 1 (1968) 105.CrossRefGoogle Scholar
  3. 3.
    P. Haasen, in “Physikalische Metallkunde” (Springer, Berlin, Heidelberg, New York, Tokyo, 1984) p. 266.CrossRefGoogle Scholar
  4. 4.
    L. Delaey, R. V. Krishnan, H. Tas and H. Warlimont, J. Mater. Sci. 9 (1974) 1521.CrossRefGoogle Scholar
  5. 5.
    F. ölander, Z. Krist. 83A (1932) 145.Google Scholar
  6. 6.
    M. W. Burkart and T. A. Read, Trans. AIME 197 (1953) 1516.Google Scholar
  7. 7.
    L. C. Chang and T. A. Read, 191 (1951) 47.Google Scholar
  8. 8.
    P. Tautzenberger and D. Stöckel, Z. Wirtsch. Fertigung 81 (1986) 703.Google Scholar
  9. 9.
    E. Hornbogen, Metallwiss. Techn. 41 (1987) 488.Google Scholar
  10. 10.
    P. H. Adler, W. Yu, A. R. Pelton, R. Zadno, T. W. Duerig and R. Barresi, Scripta Metall. 24 (1990) 943.CrossRefGoogle Scholar
  11. 11.
    R. Plietsch, Diploma Thesis, University of Bonn (1993).Google Scholar
  12. 12.
    D. Stöckel, in “Legierungen mit FormgedÄchtnis”, edited by D. Stöckel and E. Hombogen (Expert, Ehningen, 1988) p. 31.Google Scholar
  13. 13.
    J. W. Christian and D. E. Laughlin, Scripta Metall. 21 (1987) 1131.CrossRefGoogle Scholar
  14. 14.
    I. Müller, Phys. Bl. 44 (1988) 135.CrossRefGoogle Scholar
  15. 15.
    S. Brandt, “Datenanalyse” (BI Wissenschaftsverlag, Heidelberg, 1989).Google Scholar
  16. 16.
    D. W. Marquardt, J. Soc. Ind. Appl. Mathem. 11 (1963) 431.CrossRefGoogle Scholar
  17. 17.
    C. Bourauel, L. Nolte and D. Drescher, Biomed. Technol. 37 (1992) 46.CrossRefGoogle Scholar
  18. 18.
    D. Drescher, C. Bourauel and M. Thier, Eur. J. Orthodont. 13 (1991) 169.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • R. Plietsch
    • 1
    • 2
  • C. Bourauel
    • 1
  • D. Drescher
    • 1
  • B. Nellen
    • 2
  1. 1.Department of OrthodonticsUniversity of BonnGermany
  2. 2.Department of PhysicsUniversity of BonnGermany

Personalised recommendations