Advertisement

Journal of Materials Science

, Volume 29, Issue 22, pp 5847–5851 | Cite as

A study of tension test specimens of laminated hybrid composites

Part II Size and alignment effects
  • H. F. Wu
  • L. L. Wu
Article

Abstract

This paper is a continuation of the research work reported on earlier in Part I: a study of tension test specimens for laminated hybrid composites. Effects of specimen size and alignment of the tensile testing machine were investigated. It is demonstrated that the variation of strength with size is significant, and alignment of the testing machine is critical. In summary, the use of a straight-sided specimen for tension testing of fibre-metal laminates is recommended. However, if one can maintain good control of alignment from the tensile testing machine, use of a dogbone-type test specimen is also applicable. The effect of specimen size on the strength of fibre-metal laminates is also examined in this study. The strength of fibre-metal laminates exhibits no size (width) effect over the range 6.4 to 38.1 mm, holding the strain rate constant.

Keywords

Polymer Tensile Testing Research Work Test Specimen Testing Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Marissen and L. B. Vogelesang, Presented at the International SAMPE Meeting, Cannes, January 1981.Google Scholar
  2. 2.
    L. B. Vogelesang, R. Marissen and J. Schijve, in “The Eleventh ICAF Symposium, Noordwijkerhout, The Netherlands, May 1981”.Google Scholar
  3. 3.
    J. W. Gunnink, L. B. Vogelesang and J. Schijve, in “The Thirteenth Congress International Council Aerospace Science, ICAS-82-2.6.1, Seattle, WA, August 1982”, p. 990.Google Scholar
  4. 4.
    J. W. Gunnink, M. L. C. E. Verbruggen and L. B. Vogelesang, Vertica 10 (1986) 241.Google Scholar
  5. 5.
    J. W. Gunnink and L. B. Vogelesang, Mater. Design 7 (1986).Google Scholar
  6. 6.
    R. J. Bucci, L. N. Mueller, R. W. Schultz and J. L. Prohaska, in “Proceedings of 32nd International SAMPE Symposium and Exhibition Anaheim, CA, 1987”, p. 902.Google Scholar
  7. 7.
    R. O. Ritchie, Weikang Yu and R. J. Bucci, Engng Fracture Mech. 32 (1989) 361.CrossRefGoogle Scholar
  8. 8.
    H. F. Wu, J. Compos. Mater. 23 (1989) 1065.CrossRefGoogle Scholar
  9. 9.
    H. F. Wu, J. Mater. Sci. 25 (1990) 1120.CrossRefGoogle Scholar
  10. 10.
    H. F. Wu, J. Mater. Sci. 26 (1991) 3721.CrossRefGoogle Scholar
  11. 11.
    H. F. Wu, J. Mater. Sci. 28 (1993) 19.CrossRefGoogle Scholar
  12. 12.
    L. H. Van Veggel, A. A. Jongebreu and J. W. Gunnink, in “The Fourteenth IACF Symposium, Ottawa, Canada, June 1987”.Google Scholar
  13. 13.
    J. W. Gunnink, ICCM 6/ECCM 2, Imperial College, London, July 1987.Google Scholar
  14. 14.
    M. Ioannou, L. J. Kok, T. M. Fielding and N. J. McNeill, in “The Fourteenth IACF Symposium, Ottawa, Canada, June 1987”.Google Scholar
  15. 15.
    L. H. Van Veggel, in “42nd Annual General Meeting of the Aeronautical Society of India, Calcutta, 1990”.Google Scholar
  16. 16.
    W. Leodolter and R. G. Pettit, Douglas Paper No. 8164, Presented at Specialist Conference on ARALL Laminates, Delft University of Technology, The Netherlands, 1988.Google Scholar
  17. 17.
    R. G. Pettit, “AEROMAT '91”, Long Beach, CA, 1991 (oral presentation).Google Scholar
  18. 18.
    H. F. Wu and L. L. Wu, J. Mater. Sci. (submitted).Google Scholar
  19. 19.
    W. Weibull, Royal Swedish Academy of Energy Sci. 151 (1939).Google Scholar
  20. 20.
    P. W. Manders and I. M. Kowalski, in “32nd International SAMPE Symposium and Exhibition, Anaheim, CA, 6–9 April, 1987”.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • H. F. Wu
    • 1
  • L. L. Wu
    • 1
  1. 1.Alcoa Technical Center, Alcoa CenterUSA

Personalised recommendations