Journal of Materials Science

, Volume 29, Issue 22, pp 5839–5846 | Cite as

Thermal degradation mechanisms of Nicalon fibre:a thermodynamic simulation

  • C. Vahlas
  • P. Rocabois
  • C. Bernard


Thermodynamic calculations for the thermal degradation of the Nicalon fibre in inert gas flow at atmospheric pressure have been performed, based on minimization of the Gibbs energy of the Si-C-O-H chemical system. The calculations are based on a critically selected thermodynamic database of the participating compounds. The results are presented by means of diagrams illustrating the quantities of condensed and gaseous species obtained as a function of treatment temperature. These are compared with recently reported TEM studies of as-received and heat-treated material, which illustrate the sequential morphologies of its structure and nanotexture as a function of treatment temperature. The main step of the observed degradation mechanism is successfully simulated in terms of the temperature, the oxygen content and the weight loss of the material. An endogenous oxidation mechanism is proposed for degradation of the fibre.


Gibbs Energy Oxygen Content Thermal Degradation Treatment Temperature Main Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Le Coustumer, M. Monthioux and A. Oberlin, J. Eur. Ceram. Soc. 11 (1993) 95.CrossRefGoogle Scholar
  2. 2.
    P. Schreck, C. Vix-Guterl, P. Ehrburger and J. Lahaye, J. Mater. Sci. 27 (1992) 4237.CrossRefGoogle Scholar
  3. 3.
    Idem, ibid. P. Schreck, C. Vix-Guterl, P. Ehrburger and J. Lahaye, J. Mater. Sci. 27 (1992) 4243.CrossRefGoogle Scholar
  4. 4.
    L. Porte and A. Sartre, 24 (1989) 271.CrossRefGoogle Scholar
  5. 5.
    C. Laffon, A. M. Flank, P. Lagarde, M. Laridjani, R. Hagege, P. Olry, J. Cotteret, J. Dixmier, J. L. Miquel, H. Hommel and A. P. Legrand, 24 (1989) 1503.CrossRefGoogle Scholar
  6. 6.
    T. Mah, N. L. Hecht, D. E. McCullum, J. R. Hoenigman, H. M. Kim, A. P. Katz and H. A. Lipsitt,, 19 (1984) 1191.CrossRefGoogle Scholar
  7. 7.
    T. J. Clark, R. M. Arons and J. B. Stamatoff, Ceram. Eng. Sci. Proc. 6 (1985) 576.CrossRefGoogle Scholar
  8. 8.
    S. M. Johnson, R. D. Brittain, R. H. Lamoreaux and D. J. Rowcliffe, J. Amer. Ceram. Soc. 71 (1988) C132.Google Scholar
  9. 9.
    T. Shimoo, M. Sugimoto and K. Okamura, Nippon Seramikkusu kyokai Gakujutsu Rombunshi (J. Ceram. Soc. Jpn) 98 (1990) 1324.CrossRefGoogle Scholar
  10. 10.
    T. Shimoo, M. Sugimoto and K. Okamura, J. Jpn Inst. Met. 54 (1990) 802.CrossRefGoogle Scholar
  11. 11.
    T. Shimoo, H. Chen and K. Okamura, J. Ceram. Soc. Jpn 100 (1992) 48.CrossRefGoogle Scholar
  12. 12.
    P. Rocabois, C. Chatillon and C. Bernard, in Proceedings of Conference on High Temperature Ceramic Matrix Composites-ECCM6, Bordeaux, September 1993, edited by R. Naslain, J. Lamon and D. Doumeingts, (Woodhead Publ., Cambridge, 1993) p. 20.Google Scholar
  13. 13.
    A. Yamaguchi, Taikabutsu Overseas 4(3) (1984) 14.Google Scholar
  14. 14.
    E. A. Gulbransen and S. A. Jansson, Oxid. Met. 4(3) (1972) 181CrossRefGoogle Scholar
  15. 15.
    S. C. Singhal, Ceramurgia Int. 2(3) (1976) 123.CrossRefGoogle Scholar
  16. 16.
    K. L. Luthra, J. Amer. Ceram. Soc. 69 (1986) C-231.CrossRefGoogle Scholar
  17. 17.
    P. Greil, J. Eur. Ceram. Soc. 6 (1990) 53.CrossRefGoogle Scholar
  18. 18.
    P. M. Benson, K. E. Spear and C. G. Pantano, in “Ceramic Microstructures '86”, edited by Pask and Evans (Plenum, 1988) pp. 415–425.Google Scholar
  19. 19.
    N. S. Jacobson, K. N. Lee and D. S. Fox, J. Amer. Ceram. Soc. 75 (1992) 1603.CrossRefGoogle Scholar
  20. 20.
    Scientific Group Thermodata Europe, available on line from Thermodata, BP66 F-38402 Saint Martin d'Hères, France and Royal Institute of Technology, S-10044 Stockholm, Sweden.Google Scholar
  21. 21.
    I. Barin (ed.), in “Thermochemical Data of Pure Substances” (VCH, Weinheim, Germany, 1989) pp. 212, 213, 262, 1092, 1094, 1335–1337, 1358.Google Scholar
  22. 22.
    L. V. Gurvich, I. V. Veyts and C. B. Alcock, in “Thermodynamic Properties of Individual Substances”, 4th Edn, Vols 1 and 2, edited by L. V. Gurvich, I. V. Veyts and C. B. Alcock (Hemisphere, New York, 1990) pp. 233, 262, 263, 265–267.Google Scholar
  23. 23.
    A. T. Dinsdale, in “SGTE Data for Pure Elements”, NPL report DMA(A) 195 (National Physical Laboratory, Teddington, 1989).Google Scholar
  24. 24.
    H. Zhang and C. G. Pantano, J. Amer. Ceram. Soc. 74 (1990) 958.CrossRefGoogle Scholar
  25. 25.
    J. Lipowitz, H. A. Freeman, R. T. Chen and E. R. Prack, Adv. Ceram. Mater. 2 (1987) 121.CrossRefGoogle Scholar
  26. 26.
    R. Pamppouch, W. S. Ptak, S. Jonas and J. Stoch, in Proceedings of the 9th International Symposium on Reactivity of Solids, edited by K. Direk, J. Habber and J. Novotng (1980) pp. 674–684.Google Scholar
  27. 27.
    B. O. Yavuz and L. L. Hench, Ceram. Eng. Sci. Proc. 3 (1982) 596.CrossRefGoogle Scholar
  28. 28.
    R. Berjoan, J. Rodriguez and F. Sibieude, Surf. Sci 271 (1992) 237.CrossRefGoogle Scholar
  29. 29.
    A. Julbe, A. Larbot, C. Guizard and L. Cot, Eur. J. Solid State Inorg. Chem. 26 (1989) 101.Google Scholar
  30. 30.
    P. Rocabois, C. Chatillon and C. Bernard, Surf. Coatings Technol. 61 (1993) 86.CrossRefGoogle Scholar
  31. 31.
    A. Oberlin, in “Chemistry and Physics of Carbon”, edited by P. A. Thrower (Dekker, New York, 1989) p. 1.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • C. Vahlas
    • 1
  • P. Rocabois
    • 2
  • C. Bernard
    • 2
  1. 1.Laboratoire Marcel Mathieu, CNRS-UPPACentre HélioparcPauFrance
  2. 2.Laboratoire de Thermodynamique et Physicochimie Métallurgiques, URA 29 CNRS-INPGDomaine UniversitaireSaint Martin d'HèresFrance

Personalised recommendations