Advertisement

Journal of Materials Science

, Volume 29, Issue 22, pp 5833–5838 | Cite as

Permanent elimination of the yield-point phenomenon in AISI 430 stainless steel by skin-pass rolling

  • A. Alvarez De Sotomayor
  • E. J. Herrera
Article

Abstract

The different yielding behaviour of skin-pass and skin-pass plus annealed samples of AISI 430 stainless steel and its dependence on substructure has been studied. Skin-pass specimens show no yield elongation in tensile testing and do not strain age at room temperature. According to TEM observations, this seems to be due to submicroscopic precipitation of low-carbon carbonitrides — most probably Cr2 (C,N) — preferably on grain boundaries. The locking of interstitials (N, C) by these precipitates could explain the absence of discontinuous yielding. On the other hand, annealing at 700‡C of skin-pass samples dissolves the carbonitride precipitates, interstitial solutes are able to segregate on dislocations, and the pinned dislocations give rise to yield-point phenomena.

Keywords

Polymer Precipitation Stainless Steel Tensile Testing Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. H. Cottrell and B. A. Bilby, Proc. Phys. Soc. A 62 (1949) 49.CrossRefGoogle Scholar
  2. 2.
    J. D. Baird, Met. Rev. 16 (1971) 1.CrossRefGoogle Scholar
  3. 3.
    G. E. Dieter, “Mechanical Metallurgy”, 2nd Edn (McGraw-Hill, New York, 1976) p. 208.Google Scholar
  4. 4.
    E. C. Leslie, “The Physical Metallurgy of Steels” (McGraw-Hill, New York, 1981) p. 79.Google Scholar
  5. 5.
    R. D. Butler and D. V. Wilson, J. Iron Steel Inst. 201 (1963) 16.Google Scholar
  6. 6.
    A. Randak, Stahl Eisen 86 (1966) 1239.Google Scholar
  7. 7.
    P. H. Pumphrey, in “Practical Electron Microscopy in Materials Science” (Van Nostrand, Princeton, NJ, 1976) p. 38.Google Scholar
  8. 8.
    L. Brewer and S. G. Chang, in “Metals Handbook”, Vol. 8, 8th Edn (ASM, Metals Park, OH, 1973) p. 404.Google Scholar
  9. 9.
    J. W. Edington “Practical Electron Microscopy in Materials Science” (Van Nostrand, Princeton, NJ, 1976) p. 29.Google Scholar
  10. 10.
    S. Eriksson, Jerkont. Ann. 118 (1934) 530.Google Scholar
  11. 11.
    R. Lagneborg, Trans. ASM 60 (1967) 67.Google Scholar
  12. 12.
    Y. Imai, T. Masumoto and K. Maeda, Sci. Rep. Res. Inst. Tohoku Univ. Ser. A 19 (1967) 35.Google Scholar
  13. 13.
    P. Ettmayer, G. Vinek and H. Rassaets, Monatsh. Chem. 97 (1966) 1258.CrossRefGoogle Scholar
  14. 14.
    A. Cottrell, “Dislocations and Plastic Flow in Crystals” (Oxford University Press, London, 1953) p. 147.Google Scholar
  15. 15.
    H. E. Mcgannon (ed.), “The Making, Shaping and Treating of Steel”, 9th Edn (United States Steel, Pittsburgh, PA, 1971) p. 1127.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • A. Alvarez De Sotomayor
    • 1
  • E. J. Herrera
    • 1
  1. 1.Grupo de Metalurgia e Ingeniería de los MaterialesE. T. S. de Ingenieros IndustrialesSevillaSpain

Personalised recommendations