Advertisement

Journal of Materials Science

, Volume 29, Issue 22, pp 5817–5825 | Cite as

Synthesis of bulk and film YBa2Cu3O7−x high-temperature superconductor by the sol-gel method

  • L. F. Admaiai
  • P. Grange
  • B. Delmon
  • M. Cassart
  • J. P. Issi
Article

Abstract

Bulk YBa2Cu3O7−x has been prepared by the sol-gel method using metal alkoxide and metal acetate as precursors and ammonia or ethylenediamine as complexing agent. The temperature of the transformation of the gel precursor to YBa2Cu3O7−x depended on the type of precursor and the agent used for adjusting the pH. The gel synthesized from precursor alkoxide gives YBa2Cu3O7−x at lower temperature (750‡C for 6 h) than with acetate. The gel synthesized by different metal acetates and ammonia produces YBa2Cu3O7−x at a lower temperature than the sample prepared from acetate and ethylenediamine. From X-ray diffraction studies it appears that a relationship exists between the reactivity of the gel and the orientation of the corresponding pellet. The preliminary results from a film prepared by painting the gel on alumina and yttria-stabilized zirconia are presented. A high sintering temperature (940‡C for 1 h) was found to be necessary for obtaining superconductor film. The reactions between YBa2Cu3O7−x and supports were reduced by using silver as buffer. The Ton of the film prepared on the modified alumina support was 91 K and Toff was 78 K.

Keywords

Alumina Ammonia Zirconia Material Processing Sinter Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. B. Bednorz and K. A. Müller, Z. Phys. B64 (1986) 189.CrossRefGoogle Scholar
  2. 2.
    M. K. Wu, J. R. Ashburnsh, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang and C. W. Chu, Phys. Rev. Lett. 58 (1987) 908.CrossRefGoogle Scholar
  3. 3.
    W. J. Weber, L. R. Pederson, J. M. Prince, K. C. Davis, G. J. Exarhos, G. D. Maupin, J. T. Prater and W. S. Frydrych, Adv. Ceram. Mater. 2(3B) (1987) 471.CrossRefGoogle Scholar
  4. 4.
    J. R. Spann, Isabel K. Lioyd, M. Kahn and M. T. Chase, J. Am. Ceram. Soc. 73 (1990) 435.CrossRefGoogle Scholar
  5. 5.
    B. C. Bunker, Diana, L. Lamppa, J. A. Voigt, US Pat. 4839339, 13 June (1989).Google Scholar
  6. 6.
    Sylvia M. Johnson, M. Ï. Gusman and D. J. Rourcliffe, Adv. Ceram. Mater. Powders 2(3B) (1987) 337.CrossRefGoogle Scholar
  7. 7.
    J. C. W. Chien, B. M. Gong and Y. S. Yang, J. M. Madsen, W. M. Tiernan and R. B. Hallock, Phys. C 165 (1990) 279.CrossRefGoogle Scholar
  8. 8.
    R. E. Lakis and S. R. Butler, Mater. Res. Soc. Symp. Proc. 169 (1990) 385.CrossRefGoogle Scholar
  9. 9.
    M. Kakihana, L. Börjesson, S. Eriksson and P. Svedlindh, J. Appl. Phys. 69 (1991) 867.CrossRefGoogle Scholar
  10. 10.
    G. Moore, S. Kramer and G. Kordas, Mater. Lett. 7 (1989) 415.CrossRefGoogle Scholar
  11. 11.
    M. L. Kullberg, M. T. Lanagan, W. Wu and R. B. Poeppel, Supercond. Sci. Technol. 4 (1991) 337.CrossRefGoogle Scholar
  12. 12.
    P. Baboiux, J. M. Tarascon, B. G. Badley, L. H. Greene, G. W. Hull, B. W. Meagher and C. B. Eom, Mater. Res. Soc. Symp. Proc. 99 (1988)Google Scholar
  13. 13.
    H. W. Zandbergen, in “Chemistry of Electronic Ceramic Materials”, edited by Peter K. Davies and Robert S. Roth, Proceedings of the International Conference on the Chemistry of Electronic Ceramic Materials, 17–22 August (1990) p. 309.Google Scholar
  14. 14.
    H. G. Lee, S. D. Park, S. W. Yang, H. S. Shin and D. Y. Won, Jpn. J. Appl. Phys. 31 (1992) L157.CrossRefGoogle Scholar
  15. 15.
    T. Ozawa, Thermochim. Acta 174 (1991) 185.CrossRefGoogle Scholar
  16. 16.
    D. K. Fork, K. Char, F. Bridges, S. Tahara, B. Lairson, J. B. Boyce, G. A. N. Connell and T. H. Geballe, Phys. C 162–164 (1989) 121.CrossRefGoogle Scholar
  17. 17.
    T. Cumberbatch, S. Deane, P. Ebarden and R. Yu, Mater. Res. Soc. Symp. Proc. 169 (1990) 739.CrossRefGoogle Scholar
  18. 18.
    M. Jergel, S. Chromik, V. Smatko, F. Hanic, G. Plesch, S. Buchta and S. Valtyniova, Supercond. Sci. Technol. 5 (1992) 225.CrossRefGoogle Scholar
  19. 19.
    Julia M. Philips, M. P. Siegal, R. B. Van Dover, T. H. Dover, T. H. Tiefel, J. H. Marshall, C. D. Brandle and G. Berkstresser, J. Mater. Res. 7 (1992) 2650.CrossRefGoogle Scholar
  20. 20.
    J. Gao, B. B. G. Klopman, W. A. M. Aarnink, A. E. Reitsma, G. J. Gerritsma and H. Rogalla, J. Appl. Phys. 71 (1992) 2333.CrossRefGoogle Scholar
  21. 21.
    M. Miyajima, T. Nakamoto, S. Nagoya, I. Hirabayashi and S. Tanaka, Supercond. Sci. Technol. 5 (1992) S292.CrossRefGoogle Scholar
  22. 22.
    Submitted for publication.Google Scholar
  23. 23.
    A. C. Pierre, Ceram. Bull. 70 (1991) 1281.Google Scholar
  24. 24.
    M. Awano, K. Kani, Y. Takao, Y. Kuwahara and H. Takagi, J. Mater. Res. 7 (1992) 3185.CrossRefGoogle Scholar
  25. 25.
    M. Karppinen, L. Niinisto and N. Veber, Acta Chem. Scand. 46 (1992) 255.CrossRefGoogle Scholar
  26. 26.
    Y. Masuda, T. Teteishi, K. Matsuaba, R. Ogawa and Y. Kawate, Jpn J. Appl. Phys. 30 (1991) 1390.CrossRefGoogle Scholar
  27. 27.
    S. Hirano, T. Hayachi and M. Miura, J. Am. Ceram. Soc. 73 (1990) 885.CrossRefGoogle Scholar
  28. 28.
    Y. Masuda, R. Ogawa, Y. Kawate, K. Matsuaba, T. Tateishi and S. Sakka, J. Mater. Res. 7 (1992) 819.CrossRefGoogle Scholar
  29. 29.
    T. C. Shields and J. S. Abell, Supercond. Sci. Technol. 5 (1992) 627.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • L. F. Admaiai
    • 1
  • P. Grange
    • 1
  • B. Delmon
    • 1
  • M. Cassart
    • 1
    • 2
  • J. P. Issi
    • 1
    • 2
  1. 1.Unité de Catalyse et Chimie des Matériaux DivisésLouvain-La-NeuveBelgium
  2. 2.Unité de Physico-Chimie de physique des MatériauxLouvain-La-NeuveBelgium

Personalised recommendations