Advertisement

Journal of Materials Science

, Volume 29, Issue 22, pp 5801–5807 | Cite as

Densification process of α′-sialon ceramics

  • K. Watari
  • T. Nagaoka
  • S. Kanzaki
Article

Abstract

The liquid-phase sintering process of α′-sialon ceramics has been investigated by high-temperature dilatometry and microstructural observation. In addition, isothermal shrinkage measurements have been performed to examine the densification kinetic parameter. It has been confirmed that densification kinetic parameters in the solution-reprecipitation stage are much larger than the rate exponent predicted for the classic liquid-phase sintering model, and are slightly smaller than that for the viscous flow process. Rapid shrinkage was observed in the solution-reprecipitation stage from the results of shrinkage rate, and corresponds to pore elimination by particle rearrangement and cooperative flow of particle/liquid mixture. These processes provide the major contribution to shrinkage. In addition, the liquid flow process occurs when the silica content in the raw powder increases, but it is retarded due to the formation of α′-sialon. It is anticipated that particle rearrangement and cooperative flow, as well as liquid-flow processes, take place in the solution-reprecipitation stage of sintering of Si3N4-based materials, and cause a large amount of shrinkage.

Keywords

Shrinkage Dilatometry Sialon Shrinkage Rate Particle Rearrangement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Oyama and O. Kamigaito, Jpn J. Appl. Phys. 10 (1971) 1637.CrossRefGoogle Scholar
  2. 2.
    K. H. Jack and W. I. Wilson, Nature (Lond.) Phys. Sci. 238 (1977) 28.CrossRefGoogle Scholar
  3. 3.
    S. Hampshire, H. K. Park, D. P. Thompson and K. H. Jack, Nature 274 (1978) 880.CrossRefGoogle Scholar
  4. 4.
    Z. -K. Huang and P. -S. Yan, J. Mater. Sci. 27 (1992) 5640.CrossRefGoogle Scholar
  5. 5.
    K. Ishizawa, N. Ayuzawa, A. Shiratani, M. Takai, N. Uchida and M. Mitomo, in “Ceramics Materials and Components for Engines”, edited by W. Bunk and H. Hausner (German Ceramics Society, Bad Honnef, FRG, 1986) pp. 511–18.Google Scholar
  6. 6.
    A. Nagel, P. Greil and G. Petzow, Rev. de Chem. Miner. 22 (1985) 437.Google Scholar
  7. 7.
    S. Slasor and D. P. Thompson, in “Non-Oxide Technical and Engineering Ceramics”, edited by S. Hampshire (Elsevier, London, 1986) pp. 223–30.CrossRefGoogle Scholar
  8. 8.
    O. Abe, J. Mater. Sci. 25 (1990) 3641.CrossRefGoogle Scholar
  9. 9.
    W. D. Kingery, J. Appl. Phys. 30 (1959) 301.CrossRefGoogle Scholar
  10. 10.
    R. M. German “Liquid Phase Sintering” (Plenum Press, New York, 1985) Ch. 4F.CrossRefGoogle Scholar
  11. 11.
    K. Watari, M. E. Brito, M. Ohashi and S. Kanzaki, J. Am. Ceram. Soc., submitted.Google Scholar
  12. 12.
    D. Suttor and G. S. Fischman, 75 (1992) 1063.CrossRefGoogle Scholar
  13. 13.
    K. Watari, S. Kanzaki, M. Asayama, A. Tsuge, K. Isozaki and H. Hirotsuru, in “Proceedings of the Annual Meeting of The Ceramics Society of Japan”, (Ceramics Society of Japan, Tokyo, 1993) p. 610.Google Scholar
  14. 14.
    W. D. Kingery, in “Ceramics Fabrication Process”, edited by W. D. Kingery (Wiley, New York, 1978) pp. 131–40.Google Scholar
  15. 15.
    G. Petzow and W. A. Kaysser, in “Sintered Metal-Ceramics Composite”, edited by G. S. Upahyaya (Elsevier Science, Amsterdam, 1984) pp. 51–70.Google Scholar
  16. 16.
    G. Petzow and W. A. Kaysser, in “Sintering Key Papers”, edited by S. Somiya and Y. Moriyoshi, (Elsevier Applied Science, London, New York, 1990) pp. 595–614.CrossRefGoogle Scholar
  17. 17.
    D. N. Yoon and W. J. Huppmann Acta Metall. 27 (1979) 693.CrossRefGoogle Scholar
  18. 18.
    H. H. Park, S. -J. Cho and D. N. Yoon, Metall. Trans. 15A (1984) 1075.CrossRefGoogle Scholar
  19. 19.
    G. Z. Cao, R. Metselaar and G. Ziegler, J. Eur. Ceram. Soc. 11 (1993) 115.CrossRefGoogle Scholar
  20. 20.
    C. Chatfield, T. Ekstrom and M. Mikus, J. Mater. Sci. 21 (1986) 2297.CrossRefGoogle Scholar
  21. 21.
    L. S. Sigl and H-J. Kleebe, J. Am. Ceram. Soc. 76 (1993) 773.CrossRefGoogle Scholar
  22. 22.
    G. Z. Cao, R. Metselaar and G. Ziegler, J. Mater. Sci. Lett. 11 (1992) 685.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • K. Watari
    • 1
  • T. Nagaoka
    • 1
  • S. Kanzaki
    • 1
  1. 1.National Industrial Research Institute of NagoyaNagoyaJapan

Personalised recommendations