Advertisement

Journal of Materials Science

, Volume 31, Issue 17, pp 4679–4687 | Cite as

The shrinkage compensation of unsaturated polyester resins — polyvinyl acetate blends polymerization proceeds through fractal morphologies: characterization and simulation

  • M. Ruffier
  • G. Merle
  • J. P. Pascault
  • H. Bouleçane
  • N. Vincent
Article

Abstract

Blends of unsaturated polyester, styrene and polyvinyl acetate are hot cured either between glass plates or under pressure in a molding simulator. The morphologies of the products are observed using microscopy and show their usual aspects. They are characterized according to fractal concepts by image processing; the influence of mixture composition, pressure and temperature is investigated. Based on the hypothesis that phase separation governs the shrinkage compensation, a computer simulation of the fissuration phenomenon is performed using the diffusion limited agregation (DLA) model. This fractal model gives realistic results, and is used to show the effect of network parameters on the fissures fractal dimensions.

Keywords

Shrinkage Styrene Phase Separation Fractal Dimension Glass Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. J. Bartkus and C. H. Kroekel, Appl. Poly. Symp. 15 (1970) 113.Google Scholar
  2. 2.
    V. A. Pattison, R. R. Hindersinn and W. T. Schwartz, J. Appl. Polym. Sci. 19 (1975) 3045.CrossRefGoogle Scholar
  3. 3.
    K. E. Atkins, “Polymer Blends”, D. R. Paul and S. Newman, (Academic Press Inc., London1978) Vol. 2, pp. 391–413.CrossRefGoogle Scholar
  4. 4.
    A. Siegman, M. Narkis, J. Kost and A. T. Dibenedetto, Intern. J. Polymeric. Mater. 6 (1978) 217.CrossRefGoogle Scholar
  5. 5.
    L. R. Ross, S. P. Hardebeck and M. A. Bachmann, 43rd Annual Conference, Composites Institute, The Society of the Plastics Industry, Inc. Cincinatti, February 1–5, 1988, Session 17-C, 4 p.Google Scholar
  6. 6.
    T. Mitani, H. Shiraishi, K. Honda and G. E. Owen, 44th Annual Conference, Composites Institute, The Society of the Plastics Industry, Inc. Dallas, February 6–9, 1989, Session 12-F, 11 p.Google Scholar
  7. 7.
    L. Suspene, D. Fourquier and Y. S. Yang, 45th Annual Conference, Composites Institute, The Society of Plastics Industry, Inc. Washington, February 6–9, 1990, Session 12-F 8 p.Google Scholar
  8. 8.
    C. B. Bucknall, I. K. Partridge and M. J. Phillips, Polymer 32 (1991) 636.CrossRefGoogle Scholar
  9. 9.
    C. B. Bucknall, P. Davies and I. K. Partridge, ibid. 26 (1985) 109.CrossRefGoogle Scholar
  10. 10.
    Y. S. Yang and L. J. Lee, ibid. 29 (1988) 1793.CrossRefGoogle Scholar
  11. 11.
    L. Kiaee, Y. S. Yang and L. J. Lee, AICHE Symp. 84 (1988) 12.Google Scholar
  12. 12.
    M. Kinkelaar, C. P. Hsu and L. J. Lee, 45th Annual Conference, Composites Institute, The Society of the Plastics Industry, Inc. February 12–15, 1990.Google Scholar
  13. 13.
    C. P. Hsu, M. Kinkelaar, P. Hu and L. J. Lee, Polym. Eng. Sci. 31 (1991) 1450.CrossRefGoogle Scholar
  14. 14.
    L. Suspene, D. Fourquier and Y. S. Yang, Polymer 32 (1991) 1593.CrossRefGoogle Scholar
  15. 15.
    L. Suspene and Y. S. Yang, 46th Annual Conference, Composites Institute, The Society of the Plastics Industry, Inc. February 18–21, 1991, Session 7-C, 7 p.Google Scholar
  16. 16.
    C. B. Bucknall, I. K. Partridge and M. J. Phillips, Polymer, 32 (1991) 786.CrossRefGoogle Scholar
  17. 17.
    M. Ruffier, G. Merle and J. P. Pascault, Polym. Eng. Sci. 33 (1993) 466.CrossRefGoogle Scholar
  18. 18.
    H. Van Damme, C. Laroche, L. Gatineau and P. Levitz, J. Phys. 48 (1987) 1121.CrossRefGoogle Scholar
  19. 19.
    J. F. Gouyet, “Physique et structures fractales”. (Masson, Paris: 1992) 234.Google Scholar
  20. 20.
    S. Borman, Chemical & Engineering News, (1991) April, p. 28–36.Google Scholar
  21. 21.
    B. Mandelbrot, “Les objects fractals” (Flammarion, Pairs 1984) 203.Google Scholar
  22. 22.
    M. Coster and J. L. Chermant, “Precis d'analyse d'images”. (Presses du CNRS, Paris 1989) 560.Google Scholar
  23. 23.
    A. Pentland, IEEE Trans. Pattern Anal. Machine Intell., 6(6) (1984) 661.CrossRefGoogle Scholar
  24. 24.
    C. S. Pande, N. Louat, R. A. Masumara and S. Smith, Phil. Mag. Lett. 55 (1987) 99.CrossRefGoogle Scholar
  25. 25.
    R. Creutzburg and E. IvanovLecture Notes in Computer Science, Vol. 399”, (1989) p. 42–51.CrossRefGoogle Scholar
  26. 26.
    T. Shibayanagi, O. Yamamoto and S. Hori, Materials Transactions, JIM 31 (1990) 225.CrossRefGoogle Scholar
  27. 27.
    H. Takayasu, Prog. Theor. Phys. 74 (1985) 1343.CrossRefGoogle Scholar
  28. 28.
    H. J. Herrmann, J. Kertesz and L. De Arcangelis, Europhys. Lett. 10 (1989) 147.CrossRefGoogle Scholar
  29. 29.
    L. M. Sander, Nature 322 (1986) 789.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • M. Ruffier
    • 1
  • G. Merle
    • 1
  • J. P. Pascault
    • 1
  • H. Bouleçane
    • 2
  • N. Vincent
    • 2
  1. 1.Laboratoire des Matériaux Macromoléculaires, Bât. 403URA CNRS n∘ 507Villeurbanne CedexFrance
  2. 2.Modélisation des Systèmes et Reconnaissance des Formes (LISPI), Bât 403Villeurbanne CedexFrance

Personalised recommendations