Advertisement

Journal of Materials Science

, Volume 31, Issue 17, pp 4663–4670 | Cite as

Sapphire matrix composites reinforced with single crystal YAG phases

  • Y. Waku
  • H. Ohtsubo
  • N. Nakagawa
  • Y. Kohtoku
Article

Abstract

An investigation of fabrication technology on eutectic composites consisting of Al2O3 phases and YAG (Y3Al5O12) phases was carried out by applying the unidirectional solidification process. Unidirectionally solidified eutectic composites consisting of 〈110〉 sapphire phases and 〈420〉 single crystal YAG phases could be fabricated successfully by lowering a Mo crucible at a speed of 5 mm h−1 under a pressure of 10−5 mmHg of argon. These eutectic composites have excellent high-temperature properties up to 1973 K. For example, the flexural strength is 360–500 MPa independent of testing temperature from room temperature to 1973 K. Oxidation resistance at 1973 K in an air atmosphere is superior to SiC and Si3N4 and the microstructure of these eutectic composites is stable even after heat treatment at 1773 K for 50 h in an air atmosphere.

Keywords

Microstructure Heat Treatment Argon Al2O3 Sapphire 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Waku and T. Nagasawa, in Proceedings of Symposium on Processing Fabrication of Advanced Materials III sponsored by the Structural Materials Division (SMD) of The Minerals, Metals & Materials Society (TMS) Materials Week '93, Pittsburgh, Pennsylvania, 17–21 October, 1993, edited by V. A. Ravi, T. S. Srivatsan and J. J. Moore, p. 271.Google Scholar
  2. 2.
    R. Bowman and R. Noebe, Adv. Mater. Process. 8 (1989) 35.Google Scholar
  3. 3.
    Y. Waku and T. Nagasawa, in Proceedings of Symposium on Processing Fabrication of Advanced Materials III sponsored by the Structural Materials Division (SMD) of The Minerals, Metals & Materials Society (TMS) Materials Week '93, Pittsburgh, Pennsylvania, 17–21 October, 1993, edited by V. A. Ravi, T. S. Srivatsan and J. J. Moore, p. 271.Google Scholar
  4. 4.
    J. W. Warren, Ceram. Eng. Sci. Proc. 6 (1985) 64.Google Scholar
  5. 5.
    P. J. Lamicq, G. B. Bernhart, M. M. Dauchier and J. G. Mace, Amer. Ceram. Soc. Bull., 65 (1986) 336.Google Scholar
  6. 6.
    A. N. Stroh, Adv. Phys. 6 (1957) 418.CrossRefGoogle Scholar
  7. 7.
    V. S. Stubican, R. C. Bradt, F. L. Kennard, W. J. Minford and C. C. Storrel, “Tailoring Multiphase and Composite Ceramics” (Plenum Press, New York and London, 1986).Google Scholar
  8. 8.
    E. M. Levin, C. R. Robbins and H. F. McMurdie “Phase Diagrams for Ceramists 1969 Supplement” (The American Ceramics Society, USA, 1969).Google Scholar
  9. 9.
    M. Mizuno, J. Amer. Ceram. Soc. 74 (1991) 3017.CrossRefGoogle Scholar
  10. 10.
    R. W. Davidge and A. G. Evans, Mater. Sci. Eng. 6 (1970) 281.CrossRefGoogle Scholar
  11. 11.
    P. Lamicq, in Proceedings of Japan-Europe Symposium on Composite Materials, Nagoya, June 1993, edited by R & D Institute of Metals and Composites for Future Industries in Japan (Japan Industrial Technology Association, Tokyo, 1993) p. 4.Google Scholar
  12. 12.
    D. W. Kotchick and R. E. Tressler, J. Amer. Ceram. Soc. 63 (1980) 429.CrossRefGoogle Scholar
  13. 13.
    D. R. Clarke, ibid. 62 (1979) 236.CrossRefGoogle Scholar
  14. 14.
    J. Echigoya, S. Hayashi, K. Sasaki and H. Suto, J. Jpn. Inst. Metals 48 (1984) 430.CrossRefGoogle Scholar
  15. 15.
    T. Sato, S. Ohtaki, T. Endo and M. Shimada, J. Soc. Mater. Sci. Jpn. 37 (1988) 77.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Y. Waku
    • 1
  • H. Ohtsubo
    • 1
  • N. Nakagawa
    • 1
  • Y. Kohtoku
    • 1
  1. 1.Ube Research Laboratory, Corporate Research & DevelopmentUBE Industries, Ltd.YamaguchiJapan

Personalised recommendations