Journal of Materials Science

, Volume 31, Issue 17, pp 4617–4624 | Cite as

Perovskite-type BaTiO3 ceramics containing particulate SiC

Part I. Structure variation and phase transformation
  • H. J. Hwang
  • T. Sekino
  • K. Ota
  • K. Niihara


BaTiO3-based composites with nanosized SiC particulates were successfully fabricated by a hot-pressing technique in an argon atmosphere. Crystal structure and phase transformation behaviour were investigated by X-ray diffraction analysis, linear thermal expansion analysis and internal friction measurement. It was confirmed that the added SiC particulates were uniformly distributed within the matrix BaTiO3 grains, with some larger particulates located at the BaTiO3 grain boundaries. In addition, there were no reaction phases between BaTiO3 matrix and SiC particulates. The crystal structure gradually changed from tetragonal to cubic phase with respect to the SiC content. The Curie temperature, Tc, was lowered as the SiC content increased. Moreover, the transformations in the low-temperature range almost disappeared above 1 vol% SiC. The diffused phase transformation phenomenon was observed as the SiC content increased up to 3 vol%. The results were associated with the grain-size reduction, the existence of oxygen vacancies and the residual stresses associated with the thermal expansion mismatch between matrix and SiC particulate. The influence on the domain structure development of SiC particulates dispersed within the matrix grains was also discussed.


Residual Stress BaTiO3 Thermal Expansion Mismatch BaTiO3 Ceramic Phase Transformation Behaviour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. M. Chiang and T. Takaji, J. Am. Ceram. Soc. 73 (1990) 3286.CrossRefGoogle Scholar
  2. 2.
    W. Heywang, Solid State Electron. 31 (1961) 51.CrossRefGoogle Scholar
  3. 3.
    G. H. Jonker, ibid. 7 (1964) 895.CrossRefGoogle Scholar
  4. 4.
    H. L. Hsigh and T. T. Fang, J. Am. Ceram. Soc. 73 (1990) 1566.CrossRefGoogle Scholar
  5. 5.
    S. K. Nag and D. C. Agrawal, J. Mater. Sci. 27 (1992) 4125.CrossRefGoogle Scholar
  6. 6.
    O. Saburi, J. Am. Ceram. Soc. 44 (1961) 54.CrossRefGoogle Scholar
  7. 7.
    C. J. Ting, C. J. Peng, H. Y. Lu and S. T. Wu, ibid. 73 (1990) 329.CrossRefGoogle Scholar
  8. 8.
    H. Ihrig, ibid. 64 (1981) 617.CrossRefGoogle Scholar
  9. 9.
    H. F. Cheng, T. F. Lin, C. T. Hu and I. N. Lin, ibid. 76 (1993) 827.CrossRefGoogle Scholar
  10. 10.
    S. K. Chiang, W. E. Lee and D. W. Readey, Am. Ceram. Soc. Bull. 66 (1987) 1230.Google Scholar
  11. 11.
    T. R. Armstrong and R. C. Buchanau, J. Am. Ceram. Soc. 73 (1990) 1268.CrossRefGoogle Scholar
  12. 12.
    H. Emoto and J. Hojo, J. Ceram. Soc. Jpn 100 (1992) 555.CrossRefGoogle Scholar
  13. 13.
    B. Malic, M. Kosec and T. Kosmac, Ferroelectrics 129 (1992) 147.CrossRefGoogle Scholar
  14. 14.
    A. Nakahira and K. Niihara, J. Ceram. Soc. Jpn 100 (1992) 448.CrossRefGoogle Scholar
  15. 15.
    I. Thompon and V. D. Krstic, J. Mater. Sci. 27 (1992) 5765.CrossRefGoogle Scholar
  16. 16.
    E. D. Case, J. R. Smyth and V. Monthei, J. Am. Ceram. Soc. 64 (1981) C-24.CrossRefGoogle Scholar
  17. 17.
    P. R. Vaya, J. Majhi, B. S. V. Gopalam and C. Dattatreyan, Phys. Status Solidi A 87 (1985) 341.CrossRefGoogle Scholar
  18. 18.
    Z. M. Hanafi, F. M. Ismail, F. F. Hammad and S. A. Nasser, J. Mater. Sci 27 (1992) 3988.CrossRefGoogle Scholar
  19. 19.
    H. Arend and L. Kihlborg, J. Am. Ceram. Soc. 52 (1969) 63.CrossRefGoogle Scholar
  20. 20.
    R. C. Devries, ibid. 43 (1960) 226.CrossRefGoogle Scholar
  21. 21.
    D. Hennings and A. Schnell, ibid. 65 (1982) 539.CrossRefGoogle Scholar
  22. 22.
    W. R. Buessem, L. E. Cross and A. K. Ctoswami, ibid. 49 (1966) 33.CrossRefGoogle Scholar
  23. 23.
    S. Kahn, ibid. 54 (1971) 452.CrossRefGoogle Scholar
  24. 24.
    A. J. Bell and A. J. Moulson, Ferroelectrics 54 (1984) 147.CrossRefGoogle Scholar
  25. 25.
    K. Ishikawa, K. Yoshikawa and N. Okada, Phys. Rev. B 37 (1988) 5852.CrossRefGoogle Scholar
  26. 26.
    R. D. Shannon and C. T. Prewitt, Acta Crystallogr. B25 (1969) 925.CrossRefGoogle Scholar
  27. 27.
    J. Selsing, J. Am. Ceram. Soc. 79 (1961) 419.CrossRefGoogle Scholar
  28. 28.
    K. Niihara, T. Hirano, A. Nakahira, K. Ojima, K. Izaki and T. Kawakami, in “Proceedings of MRS International on Advanced Material”, Vol. 5, edited by M. Doyama, S. Somiya and R. P. H. Chang (Materials Reserach Society, Pittsburgh, PA, 1989) p. 107.Google Scholar
  29. 29.
    K. Niihara, A. Nakahira, T. Uchiyama and T. Hirai, in “Fracture Mechanics of Ceramics”, Vol. 4, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1985) p. 103.Google Scholar
  30. 30.
    K. Koumoto, H. Tagawa, T. Nakano, S. Takeda and H. Yanagida, Jpn. J. Appl. Phys. 23 (1984) L305.CrossRefGoogle Scholar
  31. 31.
    G. A. Samura, Phys. Rev. 151 (1966) 378.CrossRefGoogle Scholar
  32. 32.
    D. L. Decker and Y. X. Zhao, Phys. Rev. B 39 (1989) 2432.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • H. J. Hwang
    • 1
  • T. Sekino
    • 1
  • K. Ota
    • 1
  • K. Niihara
    • 1
  1. 1.The Institute of Scientific and Industrial ResearchOsaka UniversityOsakaJapan

Personalised recommendations