Advertisement

Journal of Materials Science

, Volume 31, Issue 17, pp 4581–4589 | Cite as

Characterization of mono- and diphasic mullite precursor powders prepared by aqueous routes. 27Al and 29Si MAS-NMR spectroscopy investigations

  • I. Jaymes
  • A. Douy
  • D. Massiot
  • J. P. Coutures
Article

Abstract

The structural evolution from amorphous to crystalline mullite, for different 3Al2O3 · 2SiO2 mono- and diphasic precursors, has been investigated by 29Si and 27Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy. The crystallization has also been studied by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The chemical composition in the aluminosilicate network of the diphasic precursors and in the crystallized phases has been determined from the 29Si NMR spectra. A close agreement is found with the composition deduced from the lattice parameters measured by XRD. For monophasic precursors the amount of hexa-coordinated aluminium atoms decreases when the temperature increases while Al(IV) and Al(V) increase. Al(VI) practically completely disappears just before the crystallization at 980 °C. An alumina-rich mullite 2Al2O3 · SiO2 (2∶1 mullite) is then formed through a strong exotherm. An enthalpy of 75 kJ per mol is determined for the crystallization of the 2∶1 mullite. At higher temperatures the segregated silica is progressively reincorporated into the mullite lattice. For diphasic precursors the 29Si NMR spectroscopy shows the segregation of silica. The aluminosilicate network is then richer in alumina and the amount of remaining AlO6 octahedra before the crystallization at 980 °C is higher. Spinel crystallizes and continues to become richer in alumina until it reacts with silica to form the stoichiometric 3∶2 mullite at 1260–1275 °C. The nature of the crystallization is related to the local composition of the amorphous alumino-silicate network and to the amount of AlO6 octahedra on approaching 980 °C.

Keywords

Crystallization Nuclear Magnetic Resonance Differential Scanning Calorimetry Aluminium Atom Precursor Powder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. A. Aksay, D. M. Dabbs and M. Sarikaya, J. Amer Ceram. Soc. 74 (1991) 2343.Google Scholar
  2. 2.
    M. D. Sacks, H. W. Lee and J. A. Pask, in Ceramic Transactions, Vol. 6, “Mullite and Mullite Matrix Composites” edited by S. Somiya, R. F. Davis and J. A. Park (The American Ceramic Society, Westerville, OH 1990) p. 167.Google Scholar
  3. 3.
    D. W. Hoffman, R. Roy and S. Komarneni, J. Amer Ceram. Soc. 67 (1984) 468.Google Scholar
  4. 4.
    H. Schneider, B. Saruhan, D. Voll, L. Merwin and A. Sebald, J. Eur. Ceram. Soc. 11 (1993) 87.Google Scholar
  5. 5.
    J. Livage, M. Henry and C. Sanchez, Progress in Solid State Chemistry 18 (1988) 259.Google Scholar
  6. 6.
    C. J. Brinker and G. W. Scherer “Sol-Gel Science. The Physics and Chemistry of Sol-Gel Processing” (Academic Press, San Diego, CA, 1990).Google Scholar
  7. 7.
    P. Colomban, J. Mater. Sci. 24 (1989) 3011.Google Scholar
  8. 8.
    B. E. Yoldas and D. P. Partlow, Ibid 23 (1988) 1895.Google Scholar
  9. 9.
    C. Sanchez, J. Livage, M. Henry and F. Babonneau, J. Non-Cryst. Solids 100 (1988) 65.Google Scholar
  10. 10.
    T. Heinrich and F. Raether, Ibid 147 & 148 (1992) 152.Google Scholar
  11. 11.
    Y.-F. Chen and S. Vilminot, J. Sol-Gel Sci. & Technol. 2 (1994) 399.Google Scholar
  12. 12.
    I. Jaymes, A. Douy, P. Florian, D. Massiot and J. P. Coutures, Ibid 2 (1994) 367.Google Scholar
  13. 13.
    K. Okada and N. Otsuka, J. Amer. Ceram. Soc. 69 (1986) 652.Google Scholar
  14. 14.
    D. X. Li and W. J. Thomson, J. Mater. Res. 5 (1990) 1963.Google Scholar
  15. 15.
    J. C. Huling and G. L. Messing, J. Amer. Ceram. Soc. 72 (1989) 1725.Google Scholar
  16. 16.
    Idem, ibid. 74 (1991) 2374.Google Scholar
  17. 17.
    Idem, J. Non-Cryst. Solids 147&148 (1992) 213.Google Scholar
  18. 18.
    A. Douy, J. Eur. Ceram. Soc. 7 (1991) 117.Google Scholar
  19. 19.
    A. Douy, in “Chemical Processing of Advanced Materials”, edited by L. L. Hench and J. K. West (Wiley, New York, 1992), p. 585.Google Scholar
  20. 20.
    I. Jaymes and A. Douy, J. Amer. Ceram. Soc. 75 (1992) 3154.Google Scholar
  21. 21.
    Idem, J. Sol-Gel Sci. & Technol. 4 (1995) 7.Google Scholar
  22. 22.
    C. Jäger, J. Magn. Reson. 99 (1992) 353.Google Scholar
  23. 23.
    D. Massiot, B. Cote, F. Taulelle and J. P. Coutures, in “Applications of NMR to Cement Sciences”, Edited by P. Colombet and A. R. Grimmer (Gordon and Breach, New-York, 1994) p. 153.Google Scholar
  24. 24.
    A. Douy and P. Odier, Mater. Res. Bull. 24 (1989) 1119.Google Scholar
  25. 25.
    A. Kato, K. Inoue and Y. Katatae, Ibid. 22 (1987) 1275.Google Scholar
  26. 26.
    B. Aiken, W. P. Hsu and E. Matijevic, J. Amer. Ceram. Soc. 71 (1988) 845.Google Scholar
  27. 27.
    T. E. Wood, A. R. Siedle, J. R. Hill, R. P. Skarjune and C. J. Goodbrake, in Mat. Res. Soc. Symp. Proc. Vol. 180: “Better Ceramics through Chemistry IV” edited by C. J. Brinker, D. E. Clark and D. R. Ulrich, (The Materials Research Society, Pittsburg, PA, 1990) 97.Google Scholar
  28. 28.
    W. H. R. Shaw and J. J. Bordeaux, J. Amer. Chem. Soc. 77 (1955) 4729.Google Scholar
  29. 29.
    R. K. Iler, “The Chemistry of Silica” (Wiley, New York, 1979).Google Scholar
  30. 30.
    I. Jaymes, A. Douy, D. Massiot and J. P. Busnel, J. Amer. Ceram. Soc.D 78 (1995) 2648.Google Scholar
  31. 31.
    B. A. Goodman, J. D. Russel, B. Montez, E. Oldfield and R. J. Kirkpatrick, Phys. Chem. Mineral. 12 (1985) 342.Google Scholar
  32. 32.
    W. E. Cameron, Amer. Mineral. 62 (1977) 747.Google Scholar
  33. 33.
    R. X. Fischer, H. Schneider and M. Schmücker, Amer. Mineral. 79 (1994) 983.Google Scholar
  34. 34.
    F. J. Klug, S. Prochazka and R. H. Doremus, in Ceramic Transactions, vol. 6, “Mullite and Mullite Matrix Composites” edited by S. Somiya, R. F. Davis and J. A. Park (The American Ceramic Society, Westerville, OH, 1990) p. 15.Google Scholar
  35. 35.
    T. Ban and K. Okada, J. Amer. Ceram. Soc. 75 (1992) 227.Google Scholar
  36. 36.
    J. Ossaka, Nature 19 (1961) 1000.Google Scholar
  37. 37.
    S. Kanzaki, H. Tabata, T. Kumazawa and S. Ohta, J. Amer. Ceram. Soc. 68 (1985) C-6.Google Scholar
  38. 38.
    G. Engelhardt and D. Michel, “High Resolution Solid-State NMR of Silicates and Zeolites” (Wiley, New York, 1987).Google Scholar
  39. 39.
    E. Lippmaa, A. Samoson and M. Magï, J. Amer. Ceram. Soc. 108 (1986) 1730.Google Scholar
  40. 40.
    G. L. Turner, R. J. Kirkpatrick, S. H. Risbud and E. Oldfield, Amer. Ceram. Soc. Bull. 66 (1987) 656.Google Scholar
  41. 41.
    L. H. Merwin, A. Sebald, R. Rager and H. Schneider, Phys. Chem. Minerals 18 (1991) 47.allowed max lengthGoogle Scholar
  42. 42.
    H. Schneider, L. Merwin and A. Sebald, J. Mater. Sci. 27 (1992) 805.Google Scholar
  43. 43.
    T. Ban and K. Okada, J. Amer. Ceram. Soc. 76 (1993) 2491.Google Scholar
  44. 44.
    J. Sanz, I. Sobrados, A. L. Cavalieri, P. Pena, S. De Aza and J. S. Moya, Ibid. 74 (1991) 2398.Google Scholar
  45. 45.
    G. Kunath-Fandrei, P. Rehak, S. Steuernagel, H. Schneider and C. Jäger, Solid State Nucl. Magn. Reson. 3 (1994) 241.Google Scholar
  46. 46.
    S. Komarneni, R. Roy, C. A. Fyfe, G. J. Kennedy and H. Strobl, J. Amer. Ceram. Soc. 69 (1986) C-42.Google Scholar
  47. 47.
    A. D. Irwin, J. S. Holmgren and J. Jonas, J. Mater. Sci. 23 (1988) 2908.Google Scholar
  48. 48.
    S. L. Hietala, D. M. Smith, C. J. Brinker, A. J. Hurd, A. H. Carim and N. Dando, J. Amer. Ceram. Soc. 73 (1990) 2815.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • I. Jaymes
    • 1
  • A. Douy
    • 1
  • D. Massiot
    • 1
  • J. P. Coutures
    • 1
  1. 1.CNRS-Centre de Recherches sur la Physique des Hautes TempératuresOrléans Cedex 02France

Personalised recommendations