Advertisement

Journal of Materials Science

, Volume 31, Issue 17, pp 4559–4568 | Cite as

Characteristics of sol-gel derived PZT thin films with lead oxide cover layers and lead titanate interlayers

  • C. Lee
  • S. Kawano
  • T. Itoh
  • T. Suga
Article

Abstract

The sol-gel derived PbZr0.53Ti0.47O3 (PZT) films were fabricated on the bare Pt/Ti/SiO2/Si substrates or the same substrates coated by the PbTiO3 (PT) interlayers. The post-deposition annealing temperature and time were optimized when the PbO cover layers and PbO vapour-containing atmosphere were compared with each other and adopted as the method to diminish the lead-loss problem during the high-temperature post-deposition annealing. The X-ray diffraction patterns, microstructures, and electrical properties such as relative permittivity, εr, remanent polarization, Pr, and coercive electrical field, Ec, were investigated in relation to the annealing conditions. The PZT films deposited on the bare Pt/Ti/SiO2/Si substrates under the PbO vapour-containing atmosphere showed better electrical properties. This indicates that the PbO vapour-containing atmosphere may be the better method of lead-loss-prevention to process the lead-containing films rather than the PbO cover layer method. The electrical characteristics of the PZT films, εr=1150, a dissipation factor of 0.039, Pr=26 μC cm−2, and Ec=40.5 kV cm−1 were measured at 1 kHz. When PZT films were deposited on substrates coated by the PT layers, PZT-PT films with single perovskite phase were derived by post-deposition annealing at 500 °C for 1 h. However, the relative electrical properties are very poor, i.e. Er=160, Pr=2.0 μC cm−2 and Ec=75 kVcm−1. The optimum combination for preparing PZT-PT films is a 40 nm PbTiO3 interlayer and annealing conditions of 6 h at 550 °C in a PbO vapour-containing atmosphere; the derived films exhibit electrical properties of Er=885, Pr=21.5 μC cm−2 and Ec=64 kV cm−1. The combination of inserting a PT interlayer and annealing in a PbO vapour-containing atmosphere can prevent the formation of electrical short paths. In this case, nearly pin-hole-free PZT films can be grown on the PT (interlayer) /Pt/Ti/SiO2/Si substrates. It is believed that it is possible to prepare the PZT films with nano-scale uniformity, reproducible quality, which may be worth considering for commercial applications.

Keywords

Perovskite Annealing Condition Lead Oxide Remanent Polarization Lead Titanate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. F. Scott and C. A. Paz De Araiyo, Science 246 (1989) 1400.CrossRefGoogle Scholar
  2. 2.
    S. L. Swartz, S. D. Ramamurthi, J. R. Busch and V. E. Wood, MRS Symp. Proc. 243 (1992) 533.CrossRefGoogle Scholar
  3. 3.
    D. L. Polla, C. Ye, P. Schiller, T. Tamagawa, W. P. Robbins, D. Glumac and C. C. Hsueh, ibid. 243 (1992) 55.CrossRefGoogle Scholar
  4. 4.
    W. P. Robbins, D. L. Polla, T. Tamagawa, D. E. Glumac and W. Tjhen, J. Micromech. Microeng, 1 (1991) 247.CrossRefGoogle Scholar
  5. 5.
    A. M. Flynn, L. S. Tavrow, S. F. Bart, R. A. Brooks, D. J. Ehrlich, K. R. Udayakumar and L. E. Cross, J. MEMS 1 (1992) 44.CrossRefGoogle Scholar
  6. 6.
    C. Lee, T. Itoh, G. Sasaki, and T. Suga, Mater. Chem. Phys. 44 (1996) 25.CrossRefGoogle Scholar
  7. 7.
    D. L. Polla, C. Ye and T. Tamagawa, Appl. Phys. Lett. 59 (1991) 3539.CrossRefGoogle Scholar
  8. 8.
    C. K. Kwok and S. B. Desu, J. Mater. Res. 8 (1993) 339.CrossRefGoogle Scholar
  9. 9.
    T. Tani and D. A. Payne, J. Am. Ceram. Soc. 77 (1994) 1242.CrossRefGoogle Scholar
  10. 10.
    K. Kugimiya, I. Ueda and K. Iizima, MRS Symp. Proc. 243 (1992) 179.CrossRefGoogle Scholar
  11. 11.
    T. Tani, Z. Xu and D. A. Payne, ibid. 310 (1993) 269.CrossRefGoogle Scholar
  12. 12.
    C. D. E. Lakeman, D. J. Guistolise, T. Tani and D. A. Payne, Br. Ceram. Proc. 52 (1994) 69.Google Scholar
  13. 13.
    B. Jaffe, W. R. Cook Jr and H. Jaffe, “Piezoelectric Ceramics” (Academic Press, New York, 1971) p. 259.Google Scholar
  14. 14.
    C. V. R. V. Kumar, M. Sayer, R. Pascual, D. T. Amm, Z. Wu and D. M. Swanston, Appl. Phys. Lett. 58 (1991) 1161.CrossRefGoogle Scholar
  15. 15.
    K. Chen and J. Mackenzie, MRS Symp. Proc. 180 (1990) 663.CrossRefGoogle Scholar
  16. 16.
    C. K. Kwok and S. B. Desu, Ceram. Trans. 25 (1992) 73.Google Scholar
  17. 17.
    C. Peng and S. B. Desu, MRS Symp. Proc. 243 (1992) 335.CrossRefGoogle Scholar
  18. 18.
    Database System “MALT”, version 1.0 (Society of Calorimetry and Thermal Analysis, Tokyo, Japan, 1985).Google Scholar
  19. 19.
    K. G. Brooks, I. M. Reaney, R. Klissurska, Y. Huang, L. Bursill and N. Setter, J. Mater. Res. 9 (1994) 2540.CrossRefGoogle Scholar
  20. 20.
    G. R. Fox and S. B. Krupanidhi, ibid. 9 (1994) 699.CrossRefGoogle Scholar
  21. 21.
    E. Sato, Y. Huang, M. Kosec, A. Bell and N. Setter, Appl. Phys. Lett. 65 (1994) 2678.CrossRefGoogle Scholar
  22. 22.
    L. F. Francis and D. A. Payne, J. Am. Ceram. Soc. 74 (1991) 3000.CrossRefGoogle Scholar
  23. 23.
    G. Yi and M. Sayer, Ceram. Bull. 70 (1991) 1173.Google Scholar
  24. 24.
    A. W. Adamson, “Physical Chemistry of Surfaces” (Wiley, New York, 1982).Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • C. Lee
    • 1
  • S. Kawano
    • 1
  • T. Itoh
    • 1
  • T. Suga
    • 1
  1. 1.Nanometre-scale Manufacturing Science Laboratory, Research Centre for Advanced Science and TechnologyThe University of TokyoTokyoJapan

Personalised recommendations