Advertisement

Journal of Materials Science

, Volume 31, Issue 17, pp 4533–4539 | Cite as

Mechanical properties of T300/Al composites. Embrittlement effects due to a B4C coating

  • M. R'Mili
  • V. Massardier
  • P. Merle
  • H. Vincent
  • C. Vincent
Article

Abstract

During the preheating treatment preceding the processing of C/Al composites, a decrease in the mechanical properties of the carbon fibres is generally observed, owing to the oxidation of the fibres. Thus, it implies the use of a surface coating likely to resist the oxidation of the fibres. In this work, we chose to protect the carbon fibres by a B4C coating, using a RCVD process. This coating leads to an effective protection against oxidation, as was shown by the mechanical properties obtained by single fibre tests on the coated fibres before and after preheating. However, although this coating also protects the fibres against the reaction with liquid aluminium during processing, the tensile properties of the composite were very weak. An analysis of these results based both on the use of loose bundle tests and on a microstructural characterization of the reinforcement and of the composite by transmission electron microscopy (TEM) observations and by electron spectroscopy for chemical analysis (ESCA) led us to the conclusion that the local overthicknesses of the B4C coating have an embrittling effect, leading to a premature failure of the composite.

Keywords

Oxidation Mechanical Property Transmission Electron Microscopy Carbon Fibre Tensile Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. C. Viala, G. Gonzales and J. Bouix, J. Mater. Sci. Lett. 11 (1992) 711.CrossRefGoogle Scholar
  2. 2.
    G. Gonzales, C. Esnouf and J. C. Viala, Mater. Sci. Forum 126–128 (1993) 125.CrossRefGoogle Scholar
  3. 3.
    H. Vincent, C. Vincent, H. Mourichoux, J. P. Scharff and J. Bouix, Carbon 30 (1992) 495.CrossRefGoogle Scholar
  4. 4.
    T. Piquero, H. Vincent, C. Vincent and J. Bouix, Carbon 33 (1995) 455.CrossRefGoogle Scholar
  5. 5.
    J. Bouix, R. Favre, C. Vincent, H. Vincent, S. Cardinal, P. Fleischman, P. F. Gobin and P. Merle, in Proceedings of the “Colloque Franco-Japonais”, Tokyo (Japan) October 1990.Google Scholar
  6. 6.
    C. Vincent, H. Vincent, H. Mourichoux and J. Bouix, J. Mater. Sci. 27 (1992) 1892.CrossRefGoogle Scholar
  7. 7.
    M. R'Mili, T. Bouchaour, P. Merle, in Proceedings of the 9èmes Journées Nationales sur les Composites JNC9, (France) November 1994, edited by J.-P. Favre and A. Vautrin (1994) p. 1009.Google Scholar
  8. 8.
    M. Kh. Shorshorov, L. M. Ustinov, A. M. Zirlin, V. I. Olefirenko and L. V. Vinogradov, J. Mater. Sci. 14 (1979) 1850.CrossRefGoogle Scholar
  9. 9.
    S. Ochiai and Y. Murakami, ibid. 14 (1979) 831.CrossRefGoogle Scholar
  10. 10.
    S. Ochiai, K. Osamura and K. Honjo, Mater. Sci. Engng. A154 (1992) 149.CrossRefGoogle Scholar
  11. 11.
    D. D. Himbeault, R. A. Varin, K. Piekarski, J. Mater. Sci. 24 (1989) 2746.CrossRefGoogle Scholar
  12. 12.
    K. Honjo and A. Shindo, ibid. 21 (1986) 2043.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • M. R'Mili
    • 1
  • V. Massardier
    • 1
  • P. Merle
    • 1
  • H. Vincent
    • 2
  • C. Vincent
    • 2
  1. 1.Institut National des Sciences Appliquées de LyonGEMPPM, UMR CNRS 5510Villeurbanne CedexFrance
  2. 2.Laboratoire des Multimateriaux et Interfaces, UMR CNRS 5615Université de Lyon IVilleurbanne CedexFrance

Personalised recommendations