Journal of Materials Science

, Volume 31, Issue 17, pp 4521–4532 | Cite as

Non-hookean stress-strain response and changes in crystallite orientation of carbon fibres

  • M. Shioya
  • E. Hayakawa
  • A. Takaku


The non-hookean stress-strain response of carbon fibres was investigated in relation to changes in crystallite orientation with tensile stress. Various one-dimensional array models and a mosaic model were examined. Amongst these models, only the mosaic model in which the stress of the crystallites can be transmitted in both the transverse and the axial directions showed any quantitative agreement with the measured increases in the tensile modulus and the crystallite orientation with tensile stress. This suggests that deformation of the crystallites is constrained with increasing tensile stress. It was also found that the ratio of the tensile stress of the fibre to that of the crystallites is close to the crystallite volume fraction rather than the ratio of the fibre density to the crystallite density.


Polymer Tensile Stress Carbon Fibre Material Processing Axial Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. J. Curtis, J. M. Milne and W. N. Reynolds, Nature 220 (1968) 1024.CrossRefGoogle Scholar
  2. 2.
    C. P. Beetz, Fibre Sci. Technol. 16 (1982) 219.CrossRefGoogle Scholar
  3. 3.
    C. P. Beetz and G. W. Budd, Rev. Sci. Instrum. 54 (1983) 1222.CrossRefGoogle Scholar
  4. 4.
    I. M. Kowalski, Eight Conference, “Composite Materials: Testing and Design” ASTM STP 972 (American Society for Testing and Materials, Philadelphia, PA 1988) p. 205.Google Scholar
  5. 5.
    Y. Nukushina, J. Matsui and M. Itoh, J. Jpn Soc. Composite Mater. 15 (1989) 210.CrossRefGoogle Scholar
  6. 6.
    M. G. Northolt, L. H. Veldhuizen and H. Jansen, Carbon 29 (1991) 1267.CrossRefGoogle Scholar
  7. 7.
    W. H. M. Van Dreumel and J. L. M. Kamp, J. Composite Mater. 11 (1977) 461.CrossRefGoogle Scholar
  8. 8.
    T. Ishikawa, M. Matsushima and Y. Hayashi, J. Mater. Sci. 20 (1985) 4075.CrossRefGoogle Scholar
  9. 9.
    H. Vangerko and A. J. Barker, Composites 16 (1985) 19.CrossRefGoogle Scholar
  10. 10.
    J. D. H. Hughes, Carbon 24 (1986) 551.CrossRefGoogle Scholar
  11. 11.
    M. M. Stevanovic and T. B. Stecenko, J. Serb. Chem. Soc. 57 (1992) 785.Google Scholar
  12. 12.
    E. Hayakawa, M. Shioya and A. Takaku, Adv. Composite Mater. 4 (1994) 33.CrossRefGoogle Scholar
  13. 13.
    T. B. Stecenko and M. M. Stevanovic, J. Composite Mater. 24 (1990) 1152.CrossRefGoogle Scholar
  14. 14.
    P., Arsenovic, H., Jiang, R. K., Eby, W. W., Adams and J. M. Lin, in Proceedings Carbon 88, University of Newcastle upon Tyne, UK, edited by B. McEnaney and T. J. Mays (Institute of Physics, 1988) p. 485.Google Scholar
  15. 15.
    A. Takaku and M. Shioya, J. Mater. Sci. 25 (1990) 4873.CrossRefGoogle Scholar
  16. 16.
    M. Shioya and A. Takaku, Carbon 32 (1994) 615.CrossRefGoogle Scholar
  17. 17.
    W. Ruland, Appl. Polym. Symposia 9 (1969) 293.Google Scholar
  18. 18.
    M. Stewart and M. Feughelman, J. Mater. Sci. 8 (1973) 1119.CrossRefGoogle Scholar
  19. 19.
    O. L. Blakslee, D. G. Proctor, E. J. Seldin, G. B. Spence and T. Weng, J. Appl. Phys. 41 (1970) 3373.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • M. Shioya
    • 1
  • E. Hayakawa
    • 1
  • A. Takaku
    • 1
  1. 1.Department of Organic and Polymeric MaterialsTokyo Institute of TechnologyTokyoJapan

Personalised recommendations