Journal of Materials Science

, Volume 29, Issue 9, pp 2536–2540 | Cite as

Structural study of superionic conducting glasses Agl-AgPO3 by X-ray diffraction

  • H. Takahashi
  • E. Matsubara
  • Y. Waseda


Atomic structures of (Agl)x(AgPO3O3)1−x glasses for x=0.0, 0.1, 0.2, 0.3 and 0.5 have been investigated by X-ray diffraction. Coordination numbers and atomic distances in the near-neighbour region were determined by the least-squares variational method. The coordination numbers of P-O, P-P and O-O pairs are unchanged with x, which suggests no modification of the connectivity of the PO4 tetrahedral chains by doping with Agl. The coordination number of I around Ag+ linearly increases from 0 to 1.9 ± 0.2 with increase in x, while the coordination number of O2− around Ag+ linearly decreases from 5.1±0.2 to 2.5±0.2. This also suggests that the Agl gets into the PO4 chains while keeping the local environment of the Agi itself.


Polymer Coordination Number Material Processing Variational Method Structural Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Magistris, G. Chiodelli and M. Duclot, Solid State Ionics 9–10 (1983) 611.CrossRefGoogle Scholar
  2. 2.
    H. L. Tuller, D. P. Button and D. R. Uhlmann, J. Non-Cryst. Solids 40 (1980) 93.CrossRefGoogle Scholar
  3. 3.
    L. Börjesson, L. M. Torell, U. Dahlborg and W. S. Howells, Phys. Rev. B 39 (1989) 3404.CrossRefGoogle Scholar
  4. 4.
    M. Tachez, R. Mercier, J. P. Malugani and P. Chieux, Solid State Ionics 25 (1987) 263.CrossRefGoogle Scholar
  5. 5.
    A. Musinu, G. Paschina, G. Piccaluga and M. Magini, J. Chem. Phys. 80 (1984) 2772.CrossRefGoogle Scholar
  6. 6.
    L. Börjesson, R. L. Mcgreevy and W. S. Howells, Phil. Mag. B 65 (1992) 261.CrossRefGoogle Scholar
  7. 7.
    C. N. J. Wagner, H. Ocken and M. L. Joshi, Z. Naturforsch, 20a (1965) 325.Google Scholar
  8. 8.
    J. A. Ibers and W. C. Hamilton (eds), “International Tables for X-ray Crystallography”, Vol. IV (Kynoch, Birmingham, 1974) p. 99.Google Scholar
  9. 9.
    ibid. p. 149.Google Scholar
  10. 10.
    D. T. Cromer and J. B. Mann, J. Chem. Phys. 47 (1967) 1892.CrossRefGoogle Scholar
  11. 11.
    D. T. Cromer, ibid. 50 (1969) 4857.CrossRefGoogle Scholar
  12. 12.
    Y. Waseda, “The Structure of Non-Crystalline Materials” (McGraw-Hill, New York, 1980) p. 60.Google Scholar
  13. 13.
    H. F. Buhner and S. Steeb, Z. Naturforsch. 24a (1969) 428.Google Scholar
  14. 14.
    S. Steeb and R. Bezel, Z. Metallkde 57 (1963) 374.Google Scholar
  15. 15.
    A. H. Narten and H. A. Levy, Science 160 (1969) 447.CrossRefGoogle Scholar
  16. 16.
    A. H. Narten, J. Chem. Phys. 56 (1972) 1905.CrossRefGoogle Scholar
  17. 17.
    H. A. Levy, M. D. Danford and A. H. Karten, Report No. ORNL-3960 (ORNL, 1966).Google Scholar
  18. 18.
    Y. Waseda, E. Matsubara, K. Sugiyama, I. K. Suh, T. Kawazoe, O. Kasu, M. Ashizuka and E. Ishida, Sci. Rep. Res. Inst. Tohoku Univ. A 35 (1990) 19.Google Scholar
  19. 19.
    Von K. H. Jost, Acta Crystallogr. 16 (1963) 640.CrossRefGoogle Scholar
  20. 20.
    M. Inui, S. Takeda, Y. Shirakawa, S. Tamaki, Y. Waseda and Y. Yamaguchi, J. Phys. Soc. Jpn 60 (1991) 3025.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • H. Takahashi
    • 1
  • E. Matsubara
    • 2
  • Y. Waseda
    • 2
  1. 1.Faculty of EngineeringIbaragi UniversityIbaragi-kenJapan
  2. 2.Institute for Advanced Materials ProcessingTohoku UniversitySendaiJapan

Personalised recommendations