Advertisement

Journal of Materials Science

, Volume 29, Issue 9, pp 2531–2535 | Cite as

Microstructural evolution of sol-gel-derived phosphosilicate gel with heat treatment

  • Y. S. Kim
  • R. E. Tressler
Papers

Abstract

The microstructure of phosphosilicate gel prepared by a sol-gel process was investigated as a function of the heat-treatment temperature. Crystalline phases, Si3(PO4)4 and SiP2O7, were identified in the heat-treated phosphosilicate gel containing 56 mol% P2O5. It was found from the Fourier transform infrared spectra that phosphorus enters into the copolymer structure at ∼ 600 °C. The specific surface area of the gel increased with the heat-treatment temperature. An increase of the density of open pores with the heat-treatment temperature was observed in the secondary electron micrographs.

Keywords

Polymer Microstructure Fourier Phosphorus Fourier Transform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Yamane and T. Kouma, J. Non-Cryst. Solids 44 (1981) 181.CrossRefGoogle Scholar
  2. 2.
    R. Roy, J. Am. Ceram. Soc. 52 (1970) 344.CrossRefGoogle Scholar
  3. 3.
    S. Sakka, in “Treatise on Materials Science and Technology”, Vol. 22, edited by M. Tomozawa and R. H. Doremus (Academic Press, 1982) p. 129.Google Scholar
  4. 4.
    B. J. J. Zelinski and D. R. Uhlmann, J. Phys. Chem. Solids 45 (1984) 1069.CrossRefGoogle Scholar
  5. 5.
    S. P. Mukherjee, J. Non-Cryst. Solids 42 (1980) 477.CrossRefGoogle Scholar
  6. 6.
    H. Dislich, ibid. 57 (1983) 371.CrossRefGoogle Scholar
  7. 7.
    L. H. Kaplan and M. E. Lowe, J. Electrochem. Soc. 118 (1971) 1649.CrossRefGoogle Scholar
  8. 8.
    J. Wong, J. Non-Cryst. Solids 20 (1976) 83.CrossRefGoogle Scholar
  9. 9.
    R. A. Bowling and G.B. Larrabee, J. Electrochem. Soc. 132 (1985) 141.CrossRefGoogle Scholar
  10. 10.
    I. M. Thomas, US Pat. 3767434 (1973).Google Scholar
  11. 11.
    R. Jabra, J. Phalippou and J. Zarzycki, J. Non-Cryst. Solids 42 (1980) 489.CrossRefGoogle Scholar
  12. 12.
    A. Boulle and R. Jary, Compt. Rend. 237 (1953) 328.Google Scholar
  13. 13.
    W. R. Jacoby, PhD thesis, Rutgers University (1956).Google Scholar
  14. 14.
    G. R. Leviand and G. Peyronel, Z. Kristallogr. 92 (1935) 190.Google Scholar
  15. 15.
    I. N. Chakraborty and R. A. Condrate, Phys. Chem. Glasses 26 (1985) 68.Google Scholar
  16. 16.
    V. M. Kedyarkin, T. I. Firsova, N. N. Vyshinskii, V. A. Alferov, G. T. Vlasenko, and S. A. Krivelevich, Izvest. Akad. Nauk SSSR Neorg. Mater. 18 (1982) 1904.Google Scholar
  17. 17.
    V. A. Kolesova and A. E. Malshikov, Fizi. Khim. Stekla 10 (1984) 641.Google Scholar
  18. 18.
    H. Suzuki, H. Saito and T. Hayashi, J. Mater. Sci. 19 (1984) 396.CrossRefGoogle Scholar
  19. 19.
    A. Rozaj-Brvar and R. F. Davis, J. Mater. Sci. 18 (1983) 2108.CrossRefGoogle Scholar
  20. 20.
    C. Nelson and D. R. Tallant, Phys. Chem. Glasses 25 (1984) 31.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Y. S. Kim
    • 1
  • R. E. Tressler
    • 1
  1. 1.Department of Materials Science and EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations